Source code for honeybee_energy.writer

# coding=utf-8
"""Methods to write to idf."""
from .config import folders

from ladybug_geometry.geometry3d import Face3D
from honeybee.room import Room
from honeybee.face import Face
from honeybee.boundarycondition import Outdoors, Surface, Ground
from honeybee.facetype import Floor, RoofCeiling, AirBoundary

try:
    from itertools import izip as zip  # python 2
except ImportError:
    xrange = range  # python 3


[docs] def generate_idf_string(object_type, values, comments=None): """Get an IDF string representation of an EnergyPlus object. Args: object_type: Text representing the expected start of the IDF object. (ie. WindowMaterial:Glazing). values: A list of values associated with the EnergyPlus object in the order that they are supposed to be written to IDF format. comments: A list of text comments with the same length as the values. If None, no comments will be written into the object. Returns: ep_str -- Am EnergyPlus IDF string representing a single object. """ if comments is not None: space_count = tuple((25 - len(str(n))) for n in values) spaces = tuple(s_c * ' ' if s_c > 0 else ' ' for s_c in space_count) body_str = '\n '.join('{},{}!- {}'.format(val, spc, com) for val, spc, com in zip(values[:-1], spaces[:-1], comments[:-1])) ep_str = '{},\n {}'.format(object_type, body_str) if len(values) == 1: # ensure we don't have an extra line break ep_str = ''.join( (ep_str, '{};{}!- {}'.format(values[-1], spaces[-1], comments[-1]))) else: # include an extra line break end_str = '\n {};{}!- {}'.format(values[-1], spaces[-1], comments[-1]) \ if comments[-1] != '' else '\n {};'.format(values[-1]) ep_str = ''.join((ep_str, end_str)) else: body_str = '\n '.join('{},'.format(val) for val in values[:-1]) ep_str = '{},\n {}'.format(object_type, body_str) if len(values) == 1: # ensure we don't have an extra line break ep_str = ''.join((ep_str, '{};'.format(values[-1]))) else: # include an extra line break ep_str = ''.join((ep_str, '\n {};'.format(values[-1]))) return ep_str
[docs] def shade_mesh_to_idf(shade_mesh): """Generate an IDF string representation of a ShadeMesh. Note that the resulting string will possess both the Shading object as well as a ShadingProperty:Reflectance if the Shade's construction is not in line with the EnergyPlus default of 0.2 reflectance. Args: shade_mesh: A honeybee ShadeMesh for which an IDF representation will be returned. """ trans_sched = shade_mesh.properties.energy.transmittance_schedule.identifier if \ shade_mesh.properties.energy.transmittance_schedule is not None else '' all_shd_str = [] for i, shade in enumerate(shade_mesh.geometry.face_vertices): # process the geometry to get upper-left vertices shade_face = Face3D(shade) ul_verts = shade_face.upper_left_counter_clockwise_vertices # create the Shading:Detailed IDF string values = ( '{}_{}'.format(shade_mesh.identifier, i), trans_sched, len(ul_verts), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'transmittance schedule', 'number of vertices', '' ) shade_str = generate_idf_string('Shading:Building:Detailed', values, comments) all_shd_str.append(shade_str) # create the ShadingProperty:Reflectance if construction is not default construction = shade_mesh.properties.energy.construction if not construction.is_default: values = ( shade_mesh.identifier, construction.solar_reflectance, construction.visible_reflectance ) comments = ( 'shading surface name', 'diffuse solar reflectance', 'diffuse visible reflectance' ) if construction.is_specular: values = values + (1, construction.identifier) comments = comments + ('glazed fraction', 'glazing construction') constr_str = generate_idf_string( 'ShadingProperty:Reflectance', values, comments) all_shd_str.append(constr_str) return '\n\n'.join(all_shd_str)
[docs] def shade_to_idf(shade): """Generate an IDF string representation of a Shade. Note that the resulting string will possess both the Shading object as well as a ShadingProperty:Reflectance if the Shade's construction is not in line with the EnergyPlus default of 0.2 reflectance. Args: shade: A honeybee Shade for which an IDF representation will be returned. """ # create the Shading:Detailed IDF string trans_sched = shade.properties.energy.transmittance_schedule.identifier if \ shade.properties.energy.transmittance_schedule is not None else '' ul_verts = shade.upper_left_vertices if shade.has_parent and not isinstance(shade.parent, Room): if isinstance(shade.parent, Face): base_srf = shade.parent.identifier else: # aperture or door for parent try: base_srf = shade.parent.parent.identifier except AttributeError: base_srf = 'unknown' # aperture without a parent (not simulate-able) values = ( shade.identifier, base_srf, trans_sched, len(shade.vertices), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'base surface', 'transmittance schedule', 'number of vertices', '' ) shade_str = generate_idf_string('Shading:Zone:Detailed', values, comments) else: # orphaned shade values = ( shade.identifier, trans_sched, len(shade.vertices), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'transmittance schedule', 'number of vertices', '' ) shade_str = generate_idf_string('Shading:Building:Detailed', values, comments) # create the ShadingProperty:Reflectance IDF string if construction is not default construction = shade.properties.energy.construction if construction.is_default: return shade_str else: values = ( shade.identifier, construction.solar_reflectance, construction.visible_reflectance ) comments = ( 'shading surface name', 'diffuse solar reflectance', 'diffuse visible reflectance' ) if construction.is_specular: values = values + (1, construction.identifier) comments = comments + ('glazed fraction of surface', 'glazing construction') constr_str = generate_idf_string('ShadingProperty:Reflectance', values, comments) return '\n\n'.join((shade_str, constr_str))
[docs] def door_to_idf(door): """Generate an IDF string representation of a Door. Note that the resulting string does not include full construction definitions but it will include a WindowShadingControl definition if a WindowConstructionShade is assigned to the door. It will also include a ventilation object if the door has a VentilationOpening object assigned to it. Also note that shades assigned to the Door are not included in the resulting string. To write these objects into a final string, you must loop through the Door.shades, and call the to.idf method on each one. If the input door is orphaned, the resulting string will possess both the Shading object as well as a ShadingProperty:Reflectance that aligns with the Doors's exterior construction properties. However, a transmittance schedule that matches the transmittance of the window construction will only be referenced and not included in the resulting string. All transmittance schedules follow the format of 'Constant %.3f Transmittance'. Args: door: A honeybee Door for which an IDF representation will be returned. """ # IF ORPHANED: write the door as a shade if not door.has_parent: # create the Shading:Detailed IDF string cns = door.properties.energy.construction trans_sch = 'Constant %.3f Transmittance' % cns.solar_transmittance \ if door.is_glass else '' verts = door.upper_left_vertices verts_str = ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in verts) values = (door.identifier, trans_sch, len(verts), verts_str) comments = ('name', 'transmittance schedule', 'number of vertices', '') shade_str = generate_idf_string('Shading:Building:Detailed', values, comments) # create the ShadingProperty:Reflectance comments = ( 'shade surface name', 'diffuse solar reflectance', 'diffuse visible reflectance') if door.is_glass: values = (door.identifier, 0.2, 0.2, 1, cns.identifier) comments = comments + ('glazed fraction of surface', 'glazing construction') else: values = (door.identifier, cns.outside_solar_reflectance, cns.outside_visible_reflectance) constr_str = generate_idf_string('ShadingProperty:Reflectance', values, comments) return '\n\n'.join((shade_str, constr_str)) # IF CHILD: write the door as a fenestration surface # set defaults for missing fields door_bc_obj = door.boundary_condition.boundary_condition_object if \ isinstance(door.boundary_condition, Surface) else '' construction = door.properties.energy.construction constr_name = construction.identifier if not construction.has_shade \ else construction.window_construction.identifier frame_name = construction.frame.identifier if construction.has_frame else '' if door.has_parent: parent_face = door.parent.identifier parent_room = door.parent.parent.identifier if door.parent.has_parent \ else 'unknown' else: parent_room = parent_face = 'unknown' # create the fenestration surface string ul_verts = door.upper_left_vertices values = ( door.identifier, 'Door' if not door.is_glass else 'GlassDoor', constr_name, parent_face, door_bc_obj, door.boundary_condition.view_factor, frame_name, '1', len(door.vertices), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'surface type', 'construction name', 'building surface name', 'boundary condition object', 'view factor to ground', 'frame and divider name', 'multiplier', 'number of vertices', '' ) fen_str = generate_idf_string('FenestrationSurface:Detailed', values, comments) # create the WindowShadingControl object if it is needed if construction.has_shade: shd_prop_str = construction.to_shading_control_idf(door.identifier, parent_room) fen_str = '\n\n'.join((fen_str, shd_prop_str)) # create the VentilationOpening object if it is needed if door.properties.energy.vent_opening is not None: try: vent_str = door.properties.energy.vent_opening.to_idf() fen_str = '\n\n'.join((fen_str, vent_str)) except AssertionError: # door does not have a parent room pass return fen_str
[docs] def aperture_to_idf(aperture): """Generate an IDF string representation of an Aperture. Note that the resulting string does not include full construction definitions but it will include a WindowShadingControl definition if a WindowConstructionShade is assigned to the aperture. It will also include a ventilation object if the aperture has a VentilationOpening object assigned to it. Also note that shades assigned to the Aperture are not included in the resulting string. To write these objects into a final string, you must loop through the Aperture.shades, and call the to.idf method on each one. If the input aperture is orphaned, the resulting string will possess both the Shading object as well as a ShadingProperty:Reflectance that aligns with the Aperture's exterior construction properties. However, a transmittance schedule that matches the transmittance of the window construction will only be referenced and not included in the resulting string. All transmittance schedules follow the format of 'Constant %.3f Transmittance'. Args: aperture: A honeybee Aperture for which an IDF representation will be returned. """ # IF ORPHANED: write the aperture as a shade if not aperture.has_parent: # create the Shading:Detailed IDF string cns = aperture.properties.energy.construction trans_sch = 'Constant %.3f Transmittance' % cns.solar_transmittance verts = aperture.upper_left_vertices verts_str = ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in verts) values = (aperture.identifier, trans_sch, len(verts), verts_str) comments = ('name', 'transmittance schedule', 'number of vertices', '') shade_str = generate_idf_string('Shading:Building:Detailed', values, comments) # create the ShadingProperty:Reflectance values = (aperture.identifier, 0.2, 0.2, 1, cns.identifier) comments = ( 'shade surface name', 'diffuse solar reflectance', 'diffuse visible reflectance', 'glazed fraction of surface', 'glazing construction' ) constr_str = generate_idf_string('ShadingProperty:Reflectance', values, comments) return '\n\n'.join((shade_str, constr_str)) # IF CHILD: write the aperture as a fenestration surface # set defaults for missing fields ap_bc_obj = aperture.boundary_condition.boundary_condition_object if \ isinstance(aperture.boundary_condition, Surface) else '' construction = aperture.properties.energy.construction frame_name = construction.frame.identifier if construction.has_frame else '' if construction.has_shade: constr_name = construction.window_construction.identifier elif construction.is_dynamic: constr_name = '{}State0'.format(construction.constructions[0].identifier) else: constr_name = construction.identifier if aperture.has_parent: parent_face = aperture.parent.identifier parent_room = aperture.parent.parent.identifier if aperture.parent.has_parent \ else 'unknown' else: parent_room = parent_face = 'unknown' # create the fenestration surface string ul_verts = aperture.upper_left_vertices values = ( aperture.identifier, 'Window', constr_name, parent_face, ap_bc_obj, aperture.boundary_condition.view_factor, frame_name, '1', len(aperture.vertices), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'surface type', 'construction name', 'building surface name', 'boundary condition object', 'view factor to ground', 'frame and divider name', 'multiplier', 'number of vertices', '' ) fen_str = generate_idf_string('FenestrationSurface:Detailed', values, comments) # create the WindowShadingControl object if it is needed if construction.has_shade: shd_prop_str = construction.to_shading_control_idf( aperture.identifier, parent_room) fen_str = '\n\n'.join((fen_str, shd_prop_str)) # create the VentilationOpening object if it is needed if aperture.properties.energy.vent_opening is not None: try: vent_str = aperture.properties.energy.vent_opening.to_idf() fen_str = '\n\n'.join((fen_str, vent_str)) except AssertionError: # aperture does not have a parent room pass return fen_str
[docs] def face_to_idf(face): """Generate an IDF string representation of a Face. Note that the resulting string does not include full construction definitions. Also note that this does not include any of the shades assigned to the Face in the resulting string. Nor does it include the strings for the apertures or doors. To write these objects into a final string, you must loop through the Face.shades, Face.apertures, and Face.doors and call the to.idf method on each one. If the input face is orphaned, the resulting string will possess both the Shading object as well as a ShadingProperty:Reflectance that aligns with the Face's exterior construction properties. Furthermore, any child apertures of doors in the face will also be included as shading geometries. Args: face: A honeybee Face for which an IDF representation will be returned. """ # IF ORPHANED: write the face as a shade if not face.has_parent: # create the Shading:Detailed IDF string verts = face.punched_geometry.upper_left_counter_clockwise_vertices verts_str = ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in verts) values = (face.identifier, '', len(verts), verts_str) comments = ('name', 'transmittance schedule', 'number of vertices', '') shade_str = generate_idf_string('Shading:Building:Detailed', values, comments) # create the ShadingProperty:Reflectance IDF string cns = face.properties.energy.construction values = ( face.identifier, cns.outside_solar_reflectance, cns.outside_visible_reflectance) comments = ( 'shade surface name', 'diffuse solar reflectance', 'diffuse visible reflectance') constr_str = generate_idf_string('ShadingProperty:Reflectance', values, comments) # translate any child apertures or doors face_str = [shade_str, constr_str] for ap in face.apertures: ap._parent = None # remove parent to translate as orphaned face_str.append(aperture_to_idf(ap)) ap._parent = face # put back the parent for dr in face.doors: dr._parent = None # remove parent to translate as orphaned face_str.append(door_to_idf(dr)) dr._parent = face # put back the parent return '\n\n'.join(face_str) # IF CHILD: write the aperture as a fenestration surface # select the correct face type if isinstance(face.type, AirBoundary): face_type = 'Wall' # air boundaries are not a Surface type in EnergyPlus elif isinstance(face.type, RoofCeiling): if face.altitude < 0: face_type = 'Wall' # ensure E+ does not try to flip the Face elif isinstance(face.boundary_condition, (Outdoors, Ground)): face_type = 'Roof' # E+ distinguishes between Roof and Ceiling else: face_type = 'Ceiling' elif isinstance(face.type, Floor) and face.altitude > 0: face_type = 'Wall' # ensure E+ does not try to flip the Face else: face_type = face.type.name # select the correct boundary condition bc_name, append_txt = face.boundary_condition.name, None if isinstance(face.boundary_condition, Surface): face_bc_obj = face.boundary_condition.boundary_condition_object elif face.boundary_condition.name == 'OtherSideTemperature': face_bc_obj = '{}_OtherTemp'.format(face.identifier) append_txt = face.boundary_condition.to_idf(face_bc_obj) bc_name = 'OtherSideCoefficients' else: face_bc_obj = '' # process the geometry correctly if it has holes ul_verts = face.upper_left_vertices if face.geometry.has_holes and isinstance(face.boundary_condition, Surface): # check if the first vertex is the upper-left vertex pt1, found_i = ul_verts[0], False for pt in ul_verts[1:]: if pt == pt1: found_i = True break if found_i: # reorder the vertices to have boundary first ul_verts = reversed(ul_verts) # assemble the values and the comments if face.has_parent: if face.parent.identifier == face.parent.zone: zone_name, space_name = face.parent.zone, '' else: zone_name, space_name = face.parent.zone, face.parent.identifier else: zone_name, space_name = 'unknown', '' values = ( face.identifier, face_type, face.properties.energy.construction.identifier, zone_name, space_name, bc_name, face_bc_obj, face.boundary_condition.sun_exposure_idf, face.boundary_condition.wind_exposure_idf, face.boundary_condition.view_factor, len(face.vertices), ',\n '.join('%.3f, %.3f, %.3f' % (v.x, v.y, v.z) for v in ul_verts) ) comments = ( 'name', 'surface type', 'construction name', 'zone name', 'space name', 'boundary condition', 'boundary condition object', 'sun exposure', 'wind exposure', 'view factor to ground', 'number of vertices', '' ) face_idf = generate_idf_string('BuildingSurface:Detailed', values, comments) return face_idf if not append_txt else face_idf + append_txt
[docs] def room_to_idf(room): """Generate an IDF string representation of a Room. The resulting string will include all internal gain definitions for the Room (people, lights, equipment, process) and the infiltration definition. It will also include internal masses, ventilation fans, and daylight controls. However, complete schedule definitions assigned to these load objects are excluded. If the room's zone name is the same as the room identifier, the resulting IDF string will be for an EnergyPlus Zone and it will include ventilation requirements and thermostat objects. Otherwise, the IDF string will be for a Space with ventilation and thermostats excluded (with the assumption that these objects are to be written separately with the parent Zone). The Room's HVAC is always excluded in the string returned from this method regardless of whether the room represents an entire zone or an individual space within a larger zone. Also note that this method does not write any of the geometry of the Room into the resulting string. To represent the Room geometry, you must loop through the Room.shades and Room.faces and call the to.idf method on each one. Note that you will likely also need to call to.idf on the apertures, doors and shades of each face as well as the shades on each aperture. Args: room: A honeybee Room for which an IDF representation will be returned. """ # clean the room name so that it can be written into a comment clean_name = room.display_name.replace('\n', '') if room.identifier == room.zone: # write the zone definition is_zone = True room_str = ['!- ________ZONE:{}________\n'.format(clean_name)] ceil_height = room.geometry.max.z - room.geometry.min.z include_floor = 'No' if room.exclude_floor_area else 'Yes' zone_values = (room.identifier, '', '', '', '', '', room.multiplier, ceil_height, room.volume, room.floor_area, '', '', include_floor) zone_comments = ('name', 'north', 'x', 'y', 'z', 'type', 'multiplier', 'ceiling height', 'volume', 'floor area', 'inside convection', 'outside convection', 'include floor area') room_str.append(generate_idf_string('Zone', zone_values, zone_comments)) else: # write the space definition is_zone = False room_str = ['!- ________SPACE:{}________\n'.format(clean_name)] ceil_height = room.geometry.max.z - room.geometry.min.z space_values = (room.identifier, room.zone, ceil_height, room.volume, room.floor_area) space_comments = ('name', 'zone name', 'ceiling height', 'volume', 'floor area') room_str.append(generate_idf_string('Space', space_values, space_comments)) # write the load definitions people = room.properties.energy.people lighting = room.properties.energy.lighting electric_equipment = room.properties.energy.electric_equipment gas_equipment = room.properties.energy.gas_equipment shw = room.properties.energy.service_hot_water infiltration = room.properties.energy.infiltration ventilation = room.properties.energy.ventilation if people is not None: room_str.append(people.to_idf(room.identifier)) if lighting is not None: room_str.append(lighting.to_idf(room.identifier)) if electric_equipment is not None: room_str.append(electric_equipment.to_idf(room.identifier)) if gas_equipment is not None: room_str.append(gas_equipment.to_idf(room.identifier)) if shw is not None: shw_str, shw_sch = shw.to_idf(room) room_str.append(shw_str) room_str.extend(shw_sch) if infiltration is not None: room_str.append(infiltration.to_idf(room.identifier)) # write the ventilation and thermostat if is_zone: if ventilation is not None: room_str.append(ventilation.to_idf(room.identifier)) if room.properties.energy.is_conditioned and \ room.properties.energy.setpoint is not None: room_str.append(room.properties.energy.setpoint.to_idf(room.identifier)) # write any ventilation fan definitions for fan in room.properties.energy._fans: room_str.append(fan.to_idf(room.identifier)) # write the daylighting control if room.properties.energy.daylighting_control is not None: room_str.extend(room.properties.energy.daylighting_control.to_idf()) # write any process load definitions for p_load in room.properties.energy._process_loads: room_str.append(p_load.to_idf(room.identifier)) # write any internal mass definitions for int_mass in room.properties.energy._internal_masses: room_str.append(int_mass.to_idf(room.identifier, is_zone)) return '\n\n'.join(room_str)
[docs] def model_to_idf( model, schedule_directory=None, use_ideal_air_equivalent=True, patch_missing_adjacencies=False ): r"""Generate an IDF string representation of a Model. The resulting string will include all geometry (Rooms, Faces, Shades, Apertures, Doors), all fully-detailed constructions + materials, all fully-detailed schedules, and the room properties (loads, thermostats with setpoints, and HVAC). Essentially, the string includes everything needed to simulate the model except the simulation parameters. So joining this string with the output of SimulationParameter.to_idf() should create a simulate-able IDF. Args: model: A honeybee Model for which an IDF representation will be returned. schedule_directory: An optional file directory to which all file-based schedules should be written to. If None, all ScheduleFixedIntervals will be translated to Schedule:Compact and written fully into the IDF string instead of to Schedule:File. (Default: None). use_ideal_air_equivalent: Boolean to note whether any detailed HVAC system templates should be converted to an equivalent IdealAirSystem upon export. If False and the Model contains detailed systems, a ValueError will be raised since this method does not support the translation of detailed systems. (Default:True). patch_missing_adjacencies: Boolean to note whether any missing adjacencies in the model should be replaced with Adiabatic boundary conditions. This is useful when the input model is only a portion of a much larger model. (Default: False). Usage: .. code-block:: python import os from ladybug.futil import write_to_file from honeybee.model import Model from honeybee.room import Room from honeybee.config import folders from honeybee_energy.lib.programtypes import office_program from honeybee_energy.hvac.idealair import IdealAirSystem from honeybee_energy.simulation.parameter import SimulationParameter # Get input Model room = Room.from_box('Tiny House Zone', 5, 10, 3) room.properties.energy.program_type = office_program room.properties.energy.add_default_ideal_air() model = Model('Tiny House', [room]) # Get the input SimulationParameter sim_par = SimulationParameter() sim_par.output.add_zone_energy_use() ddy_file = 'C:/EnergyPlusV9-0-1/WeatherData/USA_CO_Golden-NREL.724666_TMY3.ddy' sim_par.sizing_parameter.add_from_ddy_996_004(ddy_file) # create the IDF string for simulation parameters and model idf_str = '\n\n'.join((sim_par.to_idf(), model.to.idf(model))) # write the final string into an IDF idf = os.path.join(folders.default_simulation_folder, 'test_file', 'in.idf') write_to_file(idf, idf_str, True) """ # duplicate model to avoid mutating it as we edit it for energy simulation original_model = model model = model.duplicate() # scale the model if the units are not meters if model.units != 'Meters': model.convert_to_units('Meters') # remove degenerate geometry within native E+ tolerance of 0.01 meters try: model.remove_degenerate_geometry(0.01) except ValueError: error = 'Failed to remove degenerate Rooms.\nYour Model units system is: {}. ' \ 'Is this correct?'.format(original_model.units) raise ValueError(error) # convert model to simple ventilation and Ideal Air Systems model.properties.energy.ventilation_simulation_control.vent_control_type = \ 'SingleZone' if use_ideal_air_equivalent: for room in model.rooms: room.properties.energy.assign_ideal_air_equivalent() # patch missing adjacencies if patch_missing_adjacencies: model.properties.energy.missing_adjacencies_to_adiabatic() # resolve the properties across zones single_zones, zone_dict = model.properties.energy.resolve_zones() # write the building object into the string model_str = ['!- =======================================\n' '!- ================ MODEL ================\n' '!- =======================================\n'] # write all of the schedules and type limits sched_strs = [] type_limits = [] used_day_sched_ids, used_day_count = {}, 1 always_on_included = False all_scheds = model.properties.energy.schedules + \ model.properties.energy.orphaned_trans_schedules for sched in all_scheds: if sched.identifier == 'Always On': always_on_included = True try: # ScheduleRuleset year_schedule, week_schedules = sched.to_idf() if week_schedules is None: # ScheduleConstant sched_strs.append(year_schedule) else: # ScheduleYear # check that day schedules aren't referenced by other model schedules day_scheds = [] for day in sched.day_schedules: if day.identifier not in used_day_sched_ids: day_scheds.append(day.to_idf(sched.schedule_type_limit)) used_day_sched_ids[day.identifier] = day elif day != used_day_sched_ids[day.identifier]: new_day = day.duplicate() new_day.identifier = 'Schedule Day {}'.format(used_day_count) day_scheds.append(new_day.to_idf(sched.schedule_type_limit)) for i, week_sch in enumerate(week_schedules): week_schedules[i] = \ week_sch.replace(day.identifier, new_day.identifier) used_day_count += 1 sched_strs.extend([year_schedule] + week_schedules + day_scheds) except TypeError: # ScheduleFixedInterval if schedule_directory is None: sched_strs.append(sched.to_idf_compact()) else: sched_strs.append(sched.to_idf(schedule_directory)) t_lim = sched.schedule_type_limit if t_lim is not None and not _instance_in_array(t_lim, type_limits): type_limits.append(t_lim) if not always_on_included: always_schedule, _ = model.properties.energy._always_on_schedule().to_idf() sched_strs.append(always_schedule) model_str.append('!- ========= SCHEDULE TYPE LIMITS =========\n') model_str.extend([type_limit.to_idf() for type_limit in set(type_limits)]) model_str.append('!- ============== SCHEDULES ==============\n') model_str.extend(sched_strs) # get the default generic construction set # must be imported here to avoid circular imports from .lib.constructionsets import generic_construction_set # write all of the materials and constructions materials = [] construction_strs = [] dynamic_cons = [] all_constrs = model.properties.energy.constructions + \ generic_construction_set.constructions_unique for constr in set(all_constrs): try: materials.extend(constr.materials) construction_strs.append(constr.to_idf()) if constr.has_frame: materials.append(constr.frame) if constr.has_shade: if constr.window_construction in all_constrs: construction_strs.pop(-1) # avoid duplicate specification if constr.is_switchable_glazing: materials.append(constr.switched_glass_material) construction_strs.append(constr.to_shaded_idf()) elif constr.is_dynamic: dynamic_cons.append(constr) except AttributeError: try: # AirBoundaryConstruction or ShadeConstruction construction_strs.append(constr.to_idf()) # AirBoundaryConstruction except TypeError: pass # ShadeConstruction; no need to write it model_str.append('!- ============== MATERIALS ==============\n') model_str.extend([mat.to_idf() for mat in set(materials)]) model_str.append('!- ============ CONSTRUCTIONS ============\n') model_str.extend(construction_strs) # write all of the HVAC systems for zones model_str.append('!- ============ HVAC SYSTEMS ============\n') for zone_id, zone_data in zone_dict.items(): rooms, z_prop, set_pt, vent = zone_data mult, ceil_hgt, vol, flr_area, inc_flr = z_prop model_str.append('!- ________ZONE:{}________\n'.format(zone_id)) zone_values = (zone_id, '', '', '', '', '', mult, ceil_hgt, vol, flr_area, '', '', inc_flr) zone_comments = ('name', 'north', 'x', 'y', 'z', 'type', 'multiplier', 'ceiling height', 'volume', 'floor area', 'inside convection', 'outside convection', 'include floor area') model_str.append(generate_idf_string('Zone', zone_values, zone_comments)) if vent is not None: model_str.append(vent.to_idf(zone_id)) hvacs = [r.properties.energy.hvac for r in rooms if r.properties.energy.hvac is not None] if set_pt is not None and len(hvacs) != 0: model_str.append(set_pt.to_idf(zone_id)) try: model_str.append(hvacs[0].to_idf_zone(zone_id, set_pt, vent)) except AttributeError: raise TypeError( 'HVAC system type "{}" does not support direct translation to IDF.\n' 'Use the export to OpenStudio workflow instead.'.format( room.properties.energy.hvac.__class__.__name__)) # write all of the HVAC systems for individual rooms not using zones for room in single_zones: if room.properties.energy.hvac is not None \ and room.properties.energy.setpoint is not None: try: model_str.append(room.properties.energy.hvac.to_idf(room)) except AttributeError: raise TypeError( 'HVAC system type "{}" does not support direct translation to IDF.\n' 'Use the export to OpenStudio workflow instead.'.format( room.properties.energy.hvac.__class__.__name__)) # get the default air boundary construction # must be imported here to avoid circular imports from .lib.constructions import air_boundary # write all of the zone geometry model_str.append('!- ============ ROOM GEOMETRY ============\n') ap_objs = [] found_ab = [] for room in model.rooms: model_str.append(room.to.idf(room)) for face in room.faces: model_str.append(face.to.idf(face)) if isinstance(face.type, AirBoundary): # write the air mixing objects air_constr = face.properties.energy.construction try: if face.identifier not in found_ab: adj_face = face.boundary_condition.boundary_condition_object adj_room = face.boundary_condition.boundary_condition_objects[-1] try: model_str.append( air_constr.to_cross_mixing_idf(face, adj_room)) except AttributeError: # opaque construction for air boundary model_str.append( air_boundary.to_cross_mixing_idf(face, adj_room)) found_ab.append(adj_face) except AttributeError as e: raise ValueError( 'Face "{}" is an Air Boundary but lacks a Surface boundary ' 'condition.\n{}'.format(face.full_id, e)) for ap in face.apertures: if len(ap.geometry) <= 4: # ignore apertures to be triangulated model_str.append(ap.to.idf(ap)) ap_objs.append(ap) for shade in ap.outdoor_shades: model_str.append(shade.to.idf(shade)) for dr in face.doors: if len(dr.geometry) <= 4: # ignore doors to be triangulated model_str.append(dr.to.idf(dr)) for shade in dr.outdoor_shades: model_str.append(shade.to.idf(shade)) for shade in face.outdoor_shades: model_str.append(shade.to.idf(shade)) for shade in room.outdoor_shades: model_str.append(shade.to.idf(shade)) # triangulate any apertures or doors with more than 4 vertices tri_apertures, _ = model.triangulated_apertures() for tri_aps in tri_apertures: for i, ap in enumerate(tri_aps): if i != 0: ap.properties.energy.vent_opening = None model_str.append(ap.to.idf(ap)) ap_objs.append(ap) tri_doors, _ = model.triangulated_doors() for tri_drs in tri_doors: for i, dr in enumerate(tri_drs): if i != 0: ap.properties.energy.vent_opening = None model_str.append(dr.to.idf(dr)) # write all context shade geometry model_str.append('!- ========== CONTEXT GEOMETRY ==========\n') pv_objects = [] for shade in model.orphaned_shades: model_str.append(shade.to.idf(shade)) if shade.properties.energy.pv_properties is not None: pv_objects.append(shade) for shade_mesh in model.shade_meshes: model_str.append(shade_mesh.to.idf(shade_mesh)) for face in model.orphaned_faces: model_str.append(face_to_idf(face)) for ap in model.orphaned_apertures: model_str.append(aperture_to_idf(ap)) for dr in model.orphaned_doors: model_str.append(door_to_idf(dr)) # write any EMS programs for dynamic constructions if len(dynamic_cons) != 0: model_str.append('!- ========== EMS PROGRAMS ==========\n') dyn_dict = {} for ap in ap_objs: con = ap.properties.energy.construction try: dyn_dict[con.identifier].append(ap.identifier) except KeyError: dyn_dict[con.identifier] = [ap.identifier] for con in dynamic_cons: model_str.append(con.to_program_idf(dyn_dict[con.identifier])) model_str.append(dynamic_cons[0].idf_program_manager(dynamic_cons)) # write any generator objects that were discovered in the model if len(pv_objects) != 0: model_str.append('!- ========== PHOTOVOLTAIC GENERATORS ==========\n') for shade in pv_objects: model_str.append(shade.properties.energy.pv_properties.to_idf(shade)) model_str.extend(model.properties.energy.electric_load_center.to_idf(pv_objects)) return '\n\n'.join(model_str)
[docs] def energyplus_idf_version(version_array=None): """Get IDF text for the version of EnergyPlus. This will match the version of EnergyPlus found in the config if it it exists. It will be None otherwise. Args: version_array: An array of up to 3 integers for the version of EnergyPlus for which an IDF string should be generated. If None, the energyplus_version from the config will be used if it exists. """ if version_array: ver_str = '.'.join((str(d) for d in version_array)) return generate_idf_string('Version', [ver_str], ['version identifier']) elif folders.energyplus_version: ver_str = '.'.join((str(d) for d in folders.energyplus_version)) return generate_idf_string('Version', [ver_str], ['version identifier']) return None
def _instance_in_array(object_instance, object_array): """Check if a specific object instance is already in an array. This can be much faster than `if object_instance in object_array` when you expect to be testing a lot of the same instance of an object for inclusion in an array since the builtin method uses an == operator to test inclusion. """ for val in object_array: if val is object_instance: return True return False