# coding=utf-8
"""Module for constructing thermal load balances from energy result data collections."""
from __future__ import division
from .match import match_rooms_to_data, match_faces_to_data
from honeybee.model import Model as hb_model
from honeybee.aperture import Aperture
from honeybee.door import Door
from honeybee.facetype import Wall, RoofCeiling, Floor
from honeybee.boundarycondition import Surface, Adiabatic
from honeybee.typing import float_positive
from ladybug.sql import SQLiteResult
from ladybug.datacollection import HourlyContinuousCollection
from ladybug.header import Header
from ladybug.datatype.energyintensity import EnergyIntensity
[docs]
class LoadBalance(object):
"""Object for constructing thermal load balances from energy results.
Args:
rooms: An array of honeybee Rooms, which will be matched to the input
data collections and used to determine which heat flow values are
through outdoor surfaces. The length of these Rooms does not have
to match the data collections and this object will only construct a
load balance for rooms that are found to be matching.
cooling_data: Array of data collections for 'Zone Ideal Loads Supply Air Total
Cooling Energy' that correspond to the input rooms.
heating_data: Array of data collections for 'Zone Ideal Loads Supply Air Total
Heating Energy' that correspond to the input rooms.
lighting_data: Array of data collections for 'Zone Lights Total Heating
Energy' that correspond to the input rooms.
electric_equip_data: Array of data collections for 'Zone Electric Equipment
Total Heating Energy' that correspond to the input rooms.
gas_equip_data: Array of data collections for 'Zone Gas Equipment Total
Heating Energy' that correspond to the input rooms.
process_data: Array of data collections for 'Zone Other Equipment Total
Heating Energy' that correspond to the input rooms.
service_hot_water_data: Array of data collections for 'Water Use Equipment
Zone Heat Gain Energy' that correspond to the input rooms.
people_data: Array of data collections for 'Zone People Total Heating
Energy' that correspond to the input rooms.
solar_data: Array of data collections for 'Zone Windows Total Transmitted
Solar Radiation Energy' that correspond to the input rooms.
infiltration_data: The infiltration heat loss (negative) or heat gain (positive),
which can be obtained by subtracting 'Zone Infiltration Total Heat
Loss Energy' data collections from 'Zone Infiltration Total Heat
Gain Energy' data collections.
mech_ventilation_data: The ventilation heat loss (negative) or heat gain
(positive) as a result of meeting minimum outdoor air requirements
with the mechanical system. This can be obtained by first subtracting
'Zone Ideal Loads Zone Total Energy' from 'Zone Ideal Loads Supply
Air Total Energy' for both heating and cooling loads. Then the
resulting heating load (ventilation loss) should be subtracted
from the cooling load (ventilation gain).
nat_ventilation_data: The natural ventilation heat loss (negative) or
heat gain (positive) which can be obtained by subtracting 'Zone
Ventilation Total Heat Loss Energy' data collections from 'Zone
Ventilation Total Heat Gain Energy' data collections.
surface_flow_data: The surface heat loss (negative) or heat gain (positive),
which can be obtained for opaque surfaces with a 'Surface Average Face
Conduction Heat Transfer Energy' data collection. For fenestration
surfaces, it can be obtained by by subtracting 'Surface Window Heat
Loss Energy' data collections from 'Surface Window Heat Gain Energy'
data collections.
units: Text for the units system in which the room geometry exists.
Choose from the following:
* Meters
* Millimeters
* Feet
* Inches
* Centimeters
use_all_solar: Boolean to note whether all of the solar_data should be used in
the resulting load balance, regardless of whether it has been matched to
the rooms. This is useful for the case that air boundaries exist in a model
and solar data is reported for grouped zones. (Default: False).
Properties:
* rooms
* floor_area
* cooling
* heating
* lighting
* electric_equip
* gas_equip
* process
* service_hot_water
* people
* solar
* infiltration
* mech_ventilation
* nat_ventilation
* conduction
* window_conduction
* opaque_conduction
* wall_conduction
* roof_conduction
* floor_conduction
* storage
* units
"""
__slots__ = \
('_rooms', '_floor_area', '_units', '_cooling', '_heating', '_lighting',
'_electric_equip', '_gas_equip', '_process', '_service_hot_water', '_people',
'_solar', '_infiltration', '_mech_ventilation', '_nat_ventilation',
'_conduction', '_window_conduction', '_opaque_conduction',
'_wall_conduction', '_roof_conduction', '_floor_conduction', '_storage')
UNITS = hb_model.UNITS
# List of all EnergyPlus output strings relevant for thermal load balances
COOLING = (
'Zone Ideal Loads Supply Air Total Cooling Energy',
'Zone Ideal Loads Supply Air Sensible Cooling Energy',
'Zone Ideal Loads Supply Air Latent Cooling Energy')
HEATING = (
'Zone Ideal Loads Supply Air Total Heating Energy',
'Zone Ideal Loads Supply Air Sensible Heating Energy',
'Zone Ideal Loads Supply Air Latent Heating Energy')
LIGHTING = (
'Zone Lights Electricity Energy',
'Zone Lights Total Heating Energy')
ELECTRIC_EQUIP = (
'Zone Electric Equipment Electricity Energy',
'Zone Electric Equipment Total Heating Energy',
'Zone Electric Equipment Radiant Heating Energy',
'Zone Electric Equipment Convective Heating Energy',
'Zone Electric Equipment Latent Gain Energy')
GAS_EQUIP = (
'Zone Gas Equipment NaturalGas Energy',
'Zone Gas Equipment Total Heating Energy',
'Zone Gas Equipment Radiant Heating Energy',
'Zone Gas Equipment Convective Heating Energy',
'Zone Gas Equipment Latent Gain Energy')
PROCESS = (
'Zone Other Equipment Total Heating Energy',
'Zone Other Equipment Convective Heating Energy',
'Zone Other Equipment Radiant Heating Energy',
'Zone Other Equipment Latent Heating Energy')
HOT_WATER = (
'Water Use Equipment Zone Sensible Heat Gain Energy',
'Water Use Equipment Zone Latent Gain Energy')
PEOPLE_GAIN = (
'Zone People Total Heating Energy',
'Zone People Sensible Heating Energy',
'Zone People Latent Gain Energy')
SOLAR_GAIN = 'Zone Windows Total Transmitted Solar Radiation Energy'
INFIL_GAIN = (
'Zone Infiltration Total Heat Gain Energy',
'Zone Infiltration Sensible Heat Gain Energy',
'Zone Infiltration Latent Heat Gain Energy',
'AFN Zone Infiltration Sensible Heat Gain Energy',
'AFN Zone Infiltration Latent Heat Gain Energy')
INFIL_LOSS = (
'Zone Infiltration Total Heat Loss Energy',
'Zone Infiltration Sensible Heat Loss Energy',
'Zone Infiltration Latent Heat Loss Energy',
'AFN Zone Infiltration Sensible Heat Loss Energy',
'AFN Zone Infiltration Latent Heat Loss Energy')
VENT_LOSS = (
'Zone Ideal Loads Zone Total Heating Energy',
'Zone Ideal Loads Zone Sensible Heating Energy',
'Zone Ideal Loads Zone Latent Heating Energy')
VENT_GAIN = (
'Zone Ideal Loads Zone Total Cooling Energy',
'Zone Ideal Loads Zone Sensible Cooling Energy',
'Zone Ideal Loads Zone Latent Cooling Energy')
NAT_VENT_GAIN = (
'Zone Ventilation Sensible Heat Gain Energy',
'Zone Ventilation Latent Heat Gain Energy',
'AFN Zone Ventilation Sensible Heat Gain Energy',
'AFN Zone Ventilation Latent Heat Gain Energy')
NAT_VENT_LOSS = (
'Zone Ventilation Sensible Heat Loss Energy',
'Zone Ventilation Latent Heat Loss Energy',
'AFN Zone Ventilation Sensible Heat Loss Energy',
'AFN Zone Ventilation Latent Heat Loss Energy')
OPAQUE_ENERGY_FLOW = 'Surface Inside Face Conduction Heat Transfer Energy'
WINDOW_LOSS = 'Surface Window Heat Loss Energy'
WINDOW_GAIN = 'Surface Window Heat Gain Energy'
def __init__(self, rooms, cooling_data=None, heating_data=None, lighting_data=None,
electric_equip_data=None, gas_equip_data=None, process_data=None,
service_hot_water_data=None, people_data=None,
solar_data=None, infiltration_data=None, mech_ventilation_data=None,
nat_ventilation_data=None, surface_flow_data=None, units='Meters',
use_all_solar=False):
"""Initialize LoadBalance."""
# Set defaults for values that are computed upon request
self._conduction = None
self._window_conduction = None
self._opaque_conduction = None
self._storage = None
self.units = units
self._floor_area = None
# match all of the room-level inputs
self._cooling = self._match_room_input(
cooling_data, rooms, 'Cooling', negate=True)
self._heating = self._match_room_input(
heating_data, rooms, 'Heating')
self._lighting = self._match_room_input(
lighting_data, rooms, 'Lighting', 'Lights')
self._electric_equip = self._match_room_input(
electric_equip_data, rooms, 'Electric Equipment', mult_per_room=True)
self._gas_equip = self._match_room_input(
gas_equip_data, rooms, 'Gas Equipment', mult_per_room=True)
self._process = self._match_room_input(
process_data, rooms, 'Process Equipment', 'Other Equipment',
mult_per_room=True)
self._service_hot_water = self._match_room_input(
service_hot_water_data, rooms, 'Service Hot Water',
'Water Use Equipment Zone', mult_per_room=True, use_mult=False)
self._people = self._match_room_input(
people_data, rooms, 'People')
self._solar = self._match_room_input(
solar_data, rooms, 'Solar', use_all=use_all_solar, space_based=True)
self._mech_ventilation = self._match_room_input(
mech_ventilation_data, rooms, 'Mechanical Ventilation', 'Ventilation')
self._nat_ventilation = self._match_room_input(
nat_ventilation_data, rooms, 'Natural Ventilation', 'Ventilation')
self._infiltration = self._match_room_input(
infiltration_data, rooms, 'Infiltration')
# match the surface-level inputs
_window_flow, self._wall_conduction, self._roof_conduction, \
self._floor_conduction = self._match_face_input(surface_flow_data, rooms)
if _window_flow is not None and self._solar is not None:
# compute just the conduction loss/gain from the windows
self._window_conduction = _window_flow - self._solar
self._window_conduction.header.metadata['type'] = 'Window Conduction'
if self._solar is not None:
self._solar = self._solar * 0.94 # account for sun reflected back out windows
# when using all of the rooms, reset the property
if use_all_solar:
self._rooms = rooms
[docs]
@classmethod
def from_sql_file(cls, model, sql_path):
"""Create a LoadBalance object from an EnergyPlus SQLite result file.
Args:
model: A honeybee Model, which will have its rooms matched to the input
data collections and used to determine which heat flow values are
through outdoor surfaces.
sql_path: Full path to an SQLite file that was generated by EnergyPlus.
this file should have the relevant load balance outputs in the
ReportData table.
"""
# load all of the relevant data from the SQL
cooling, heating, lighting, electric_equip, gas_equip, process, \
how_water, people_gain, solar_gain, infiltration, mech_vent, nat_vent, \
face_energy_flow = cls.load_data_from_sql(sql_path)
# create the LoadBalance object
bal_obj = cls(
model.rooms, cooling, heating, lighting, electric_equip, gas_equip, process,
how_water, people_gain, solar_gain, infiltration, mech_vent, nat_vent,
face_energy_flow, model.units, use_all_solar=True)
bal_obj.floor_area = bal_obj._area_as_meters_feet(model.floor_area)
return bal_obj
[docs]
@classmethod
def from_sql_file_rooms(cls, rooms, sql_path, units='Meters'):
"""Create a LoadBalance object from a SQLite result file and Rooms.
This method will perform a check such that, if the rooms do not have
properties that can be matched to certain data in the SQL, no exception
will be raised. Note that, if the input rooms contain AirBoundaries, the
solar term of the resulting balance will not be correct.
Args:
rooms: An array of honeybee Rooms, which will be matched to the input
data collections and used to determine which heat flow values are
through outdoor surfaces. The length of these Rooms does not have
to match the data collections and this object will only construct a
load balance for rooms that are found to be matching.
sql_path: Full path to an SQLite file that was generated by EnergyPlus.
this file should have the relevant load balance outputs in the
ReportData table.
units: Text for the units system in which the room geometry exists.
Choose from the following:
* Meters
* Millimeters
* Feet
* Inches
* Centimeters
"""
# load all of the relevant data from the SQL
cooling, heating, lighting, electric_equip, gas_equip, process, \
how_water, people_gain, solar_gain, infiltration, mech_vent, nat_vent, \
face_energy_flow = cls.load_data_from_sql(sql_path)
# check that the data can be matched to the input Rooms
cooling = cls._check_data_matching(rooms, cooling)
heating = cls._check_data_matching(rooms, heating)
lighting = cls._check_data_matching(rooms, lighting)
electric_equip = cls._check_data_matching(rooms, electric_equip)
gas_equip = cls._check_data_matching(rooms, gas_equip)
process = cls._check_data_matching(rooms, process)
how_water = cls._check_data_matching(rooms, how_water)
people_gain = cls._check_data_matching(rooms, people_gain)
solar_gain = cls._check_data_matching(rooms, solar_gain)
infiltration = cls._check_data_matching(rooms, infiltration)
mech_vent = cls._check_data_matching(rooms, mech_vent)
nat_vent = cls._check_data_matching(rooms, nat_vent)
# create the LoadBalance object
return cls(
rooms, cooling, heating, lighting, electric_equip, gas_equip, process,
how_water, people_gain, solar_gain, infiltration, mech_vent, nat_vent,
face_energy_flow, units)
@property
def rooms(self):
"""Get the Rooms that have been successfully matched to the input data."""
return self._rooms
@property
def cooling(self):
"""Get a data collection for the cooling of the load balance."""
return self._cooling
@property
def heating(self):
"""Get a data collection for the heating of the load balance."""
return self._heating
@property
def lighting(self):
"""Get a data collection for the lighting gain of the load balance."""
return self._lighting
@property
def electric_equip(self):
"""Get a data collection for the electric equipment gain of the load balance."""
return self._electric_equip
@property
def gas_equip(self):
"""Get a data collection for the gas equipment gain of the load balance."""
return self._gas_equip
@property
def process(self):
"""Get a data collection for the process load gain of the load balance."""
return self._process
@property
def service_hot_water(self):
"""Get a data collection for the service hot water gain of the load balance."""
return self._service_hot_water
@property
def people(self):
"""Get a data collection for the people gain of the load balance."""
return self._people
@property
def solar(self):
"""Get a data collection for the solar gain of the load balance."""
return self._solar
@property
def infiltration(self):
"""Get a data collection for the infiltration gain/loss of the load balance."""
return self._infiltration
@property
def mech_ventilation(self):
"""Get a data collection for the mechanical ventilation of the load balance."""
return self._mech_ventilation
@property
def nat_ventilation(self):
"""Get a data collection for the natural ventilation of the load balance."""
return self._nat_ventilation
@property
def conduction(self):
"""Get a data collection for all conduction loss/gain of the load balance."""
if self._conduction is None:
if self.window_conduction is not None and self.opaque_conduction is not None:
self._conduction = self.window_conduction + self.opaque_conduction
self._conduction.header.metadata['type'] = 'Conduction'
return self._conduction
@property
def window_conduction(self):
"""Get a data collection for window conduction loss/gain of the load balance."""
return self._window_conduction
@property
def opaque_conduction(self):
"""Get a data collection for opaque conduction loss/gain of the load balance."""
if self._opaque_conduction is None:
if self.wall_conduction is not None and self.roof_conduction is not None \
and self.floor_conduction is not None:
self._opaque_conduction = self.wall_conduction + \
self.roof_conduction + self.floor_conduction
self._opaque_conduction.header.metadata['type'] = 'Opaque Conduction'
return self._opaque_conduction
@property
def wall_conduction(self):
"""Get a data collection for wall conduction loss/gain of the load balance."""
return self._wall_conduction
@property
def roof_conduction(self):
"""Get a data collection for roof conduction loss/gain of the load balance."""
return self._roof_conduction
@property
def floor_conduction(self):
"""Get a data collection for floor conduction loss/gain of the load balance."""
return self._floor_conduction
@property
def storage(self):
"""Get a data collection for the remainder of the load balance."""
if self._storage is None:
other_terms = self.load_balance_terms()
if len(other_terms) != 0:
_storage = other_terms[0]
for coll in other_terms[1:]:
_storage = _storage + coll
self._storage = -_storage.duplicate() # dup to avoid editing header
self._storage.header.metadata['type'] = 'Storage'
return self._storage
@property
def units(self):
"""Get or set text for the units system in which the room geometry exists."""
return self._units
@units.setter
def units(self, value):
assert value in self.UNITS, '{} is not supported as a units system. ' \
'Choose from the following: {}'.format(value, self.units)
self._units = value
@property
def floor_area(self):
"""Get or set a number for the total floor area in square meters or square feet.
By default, this is the floor area of only the successfully-matched rooms.
This floor area accounts for Room multipliers and will always be in either
square meters or square feet depending on whether this object's units are
either SI or IP.
"""
if self._floor_area is not None:
return self._floor_area
else:
base_area = sum([room.floor_area * room.multiplier for room in self._rooms
if not room.exclude_floor_area])
return self._area_as_meters_feet(base_area)
@floor_area.setter
def floor_area(self, value):
self._floor_area = float_positive(value)
[docs]
def load_balance_terms(self, floor_normalized=False, include_storage=False):
"""Get a list of data collections with one for each term in the load balance.
Terms of the load balance that are None will be excluded from this list.
Conduction terms will only appear as opaque and window conduction terms.
Args:
floor_normalized: Boolean to note whether all of the output data
collections should have values that are normalized by the Room
floor area.
include_storage: Boolean to note whether the storage term should
be included in the list.
"""
all_terms = [self.heating, self.solar, self.service_hot_water, self.gas_equip,
self.process, self.electric_equip, self.lighting, self.people,
self.infiltration, self.mech_ventilation, self.nat_ventilation,
self.opaque_conduction, self.window_conduction, self.cooling]
bal_terms = [term for term in all_terms if term is not None and term != []]
if include_storage:
bal_terms.append(self.storage)
if floor_normalized:
flr_area = self.floor_area
if flr_area == 0: # rare case but we don't want a ZeroDivision error
return bal_terms
is_ip = True if self.units in ('Feet', 'Inches') else False
bal_terms = [self._normalize_collection(term, flr_area, is_ip)
for term in bal_terms]
return bal_terms
[docs]
@staticmethod
def load_data_from_sql(sql_path):
"""Load all data collections relevant to load balances from a SQL file.
Args:
sql_path: Full path to an SQLite file that was generated by EnergyPlus.
this file should have the relevant load balance outputs in the
ReportData table.
Returns:
A tuple where each item is a list of data collections relevant to
load balances.
"""
# create the SQL result parsing object
sql_obj = SQLiteResult(sql_path)
# get all of the results relevant for gains and losses
cooling = sql_obj.data_collections_by_output_name(LoadBalance.COOLING)
heating = sql_obj.data_collections_by_output_name(LoadBalance.HEATING)
lighting = sql_obj.data_collections_by_output_name(LoadBalance.LIGHTING)
people_gain = sql_obj.data_collections_by_output_name(LoadBalance.PEOPLE_GAIN)
solar_gain = sql_obj.data_collections_by_output_name(LoadBalance.SOLAR_GAIN)
infil_gain = sql_obj.data_collections_by_output_name(LoadBalance.INFIL_GAIN)
infil_loss = sql_obj.data_collections_by_output_name(LoadBalance.INFIL_LOSS)
vent_loss = sql_obj.data_collections_by_output_name(LoadBalance.VENT_LOSS)
vent_gain = sql_obj.data_collections_by_output_name(LoadBalance.VENT_GAIN)
nat_vent_gain = \
sql_obj.data_collections_by_output_name(LoadBalance.NAT_VENT_GAIN)
nat_vent_loss = \
sql_obj.data_collections_by_output_name(LoadBalance.NAT_VENT_LOSS)
# handle the case that both total elect/gas energy and zone gain are requested
electric_equip = \
sql_obj.data_collections_by_output_name(LoadBalance.ELECTRIC_EQUIP[1])
if len(electric_equip) == 0:
electric_equip = \
sql_obj.data_collections_by_output_name(LoadBalance.ELECTRIC_EQUIP)
gas_equip = sql_obj.data_collections_by_output_name(LoadBalance.GAS_EQUIP[1])
if len(gas_equip) == 0:
gas_equip = sql_obj.data_collections_by_output_name(LoadBalance.GAS_EQUIP)
process = sql_obj.data_collections_by_output_name(LoadBalance.PROCESS)
how_water = sql_obj.data_collections_by_output_name(LoadBalance.HOT_WATER[1])
if len(how_water) == 0:
how_water = sql_obj.data_collections_by_output_name(LoadBalance.HOT_WATER)
# subtract losses from gains
infiltration = None
mech_vent = None
nat_vent = None
if len(infil_gain) == len(infil_loss):
infiltration = LoadBalance.subtract_loss_from_gain(infil_gain, infil_loss)
if len(vent_gain) == len(vent_loss) == len(cooling) == len(heating):
mech_vent = \
LoadBalance.mech_vent_loss_gain(vent_gain, vent_loss, cooling, heating)
if len(nat_vent_gain) == len(nat_vent_loss):
nat_vent = LoadBalance.subtract_loss_from_gain(nat_vent_gain, nat_vent_loss)
# get the surface energy flow
opaque_flow = \
sql_obj.data_collections_by_output_name(LoadBalance.OPAQUE_ENERGY_FLOW)
window_loss = sql_obj.data_collections_by_output_name(LoadBalance.WINDOW_LOSS)
window_gain = sql_obj.data_collections_by_output_name(LoadBalance.WINDOW_GAIN)
window_flow = []
if len(window_gain) == len(window_loss):
window_flow = LoadBalance.subtract_loss_from_gain(window_gain, window_loss)
face_energy_flow = opaque_flow + window_flow
return cooling, heating, lighting, electric_equip, gas_equip, process, \
how_water, people_gain, solar_gain, infiltration, mech_vent, nat_vent, \
face_energy_flow
[docs]
@staticmethod
def subtract_loss_from_gain(load_gain, load_loss):
"""Subtract an array of load loss data collections from load gain collections.
This is what is needed for certain LoadBalance inputs like infiltration
and natural ventilation.
Args:
load_gain: A list of data collections with load gains.
load_loss: A list of data collections with load losses.
"""
total_loads = []
for gain, loss in zip(load_gain, load_loss):
total_load = gain - loss
total_load.header.metadata['type'] = \
total_load.header.metadata['type'].replace('Gain ', '')
total_loads.append(total_load)
return total_loads
[docs]
@staticmethod
def mech_vent_loss_gain(zone_cooling, zone_heating, cooling, heating):
"""Compute mechanical ventilation loss/gain from lists of data collections.
Args:
zone_cooling: A list of data collections for zone-level cooling.
zone_heating: A list of data collections for zone-level heating.
cooling: A list of data collections for supply air cooling.
heating: A list of data collections for supply air heating.
"""
mech_vent_loss = LoadBalance.subtract_loss_from_gain(heating, zone_heating)
mech_vent_gain = LoadBalance.subtract_loss_from_gain(cooling, zone_cooling)
total_load = LoadBalance.subtract_loss_from_gain(mech_vent_gain, mech_vent_loss)
mech_vent_load = [data.duplicate() for data in total_load]
for load in mech_vent_load:
load.header.metadata['type'] = \
'Zone Ideal Loads Ventilation Heat Energy'
return mech_vent_load
def _match_room_input(self, data_collections, rooms, data_type,
type_check_text=None, negate=False, use_all=False,
mult_per_room=False, space_based=False, use_mult=True):
"""Match a an array of input data collections to input rooms.
Args:
data_collections: An array of input data collections.
rooms: An array of input honeybee Rooms.
data_type: Text for the name of the data type for the totalled collection.
type_check_text: Optional text, which will be used to check if the input
data_collections are of the right type.
negate: Boolean to note whether the values should be negated.
use_all: Boolean to note whether all data_collections should be used instead
of those matched to the rooms.
mult_per_room: Boolean to note whether there are multiple data collections
for each room, which should be summed together.
space_based: Boolean to note whether the result is reported on the EnergyPlus
Space level instead of the Zone level. In this case, the matching to
the Room will account for the fact that the Space name is the Room
name with _Space added to it. (Default: False).
use_mult: Boolean to note whether the results should be multiplied by the
room multiplier (True) or whether the data type values already
account for the multiplier (False). (Default: True).
"""
# don't match anything if there are no collections
if data_collections is None or len(data_collections) == 0:
return None
# match the data collections to the rooms
if use_all: # firs try to see if all objects can be matched
matched_objs = match_rooms_to_data(
data_collections, rooms, use_mult, space_based)
if len(matched_objs) != len(rooms): # take them all
matched_objs = [(None, data, rm.multiplier)
for data, rm in zip(data_collections, rooms)]
elif mult_per_room: # group the collections by their type
coll_dict = {}
for coll in data_collections:
try:
coll_dict[coll.header.metadata['type']].append(coll)
except KeyError:
coll_dict[coll.header.metadata['type']] = [coll]
all_match = [match_rooms_to_data(val, rooms, use_mult, space_based)
for val in coll_dict.values()]
matched_objs = [list(tup) for tup in all_match[0]]
for other_tups in all_match[1:]:
for i, tup in enumerate(other_tups):
matched_objs[i][1] += tup[1]
else:
matched_objs = match_rooms_to_data(
data_collections, rooms, use_mult, space_based)
assert len(matched_objs) != 0, 'None of the {} data collections could be ' \
'matched to the input rooms.'.format(data_type)
self._rooms = tuple(obj[0] for obj in matched_objs) if not use_all else rooms
base_data = matched_objs[0][1]
# check that the data if of the correct type.
if 'type' in base_data.header.metadata:
check_text = type_check_text if type_check_text is not None else data_type
assert check_text in base_data.header.metadata['type'], \
'Input data collections for {} do not seem to be of the correct type:' \
'\n{}'.format(data_type, base_data.header.metadata['type'])
# compute the total values of the load
values = [0 for val in range(len(base_data))]
for obj in matched_objs:
for i, val in enumerate(obj[1].values):
values[i] += val * obj[2]
if negate:
values = [-val for val in values]
# create the new totalled data collection
new_header = base_data.header.duplicate()
if 'Zone' in new_header.metadata:
del new_header.metadata['Zone']
elif 'System' in new_header.metadata:
del new_header.metadata['System']
new_header.metadata['type'] = data_type
if isinstance(base_data, HourlyContinuousCollection):
return HourlyContinuousCollection(new_header, values)
else: # it's one of the data collections that needs datetimes
return base_data.__class__(new_header, values, base_data.datetimes)
def _match_face_input(self, surface_flow_data, rooms):
"""Match a an array of input data collections to input rooms.
Args:
surface_flow_data: An array of input data collections for surface
energy flow.
rooms: An array of input honeybee Rooms.
"""
# match the data collections to the rooms
if surface_flow_data is None or len(surface_flow_data) == 0:
return None, None, None, None
base_data = surface_flow_data[0]
values = [0 for val in range(len(base_data))]
# compute the total values of the load
window_vals, wall_vals, roof_vals, floor_vals = (values[:] for i in range(4))
for room in rooms:
mult = room.multiplier
match_objs = match_faces_to_data(surface_flow_data, room.faces)
for obj in match_objs:
if not isinstance(obj[0].boundary_condition, (Surface, Adiabatic)):
if isinstance(obj[0], (Aperture, Door)):
for i, val in enumerate(obj[1].values):
window_vals[i] += val * mult
elif isinstance(obj[0].type, Wall):
for i, val in enumerate(obj[1].values):
wall_vals[i] += val * mult
elif isinstance(obj[0].type, RoofCeiling):
for i, val in enumerate(obj[1].values):
roof_vals[i] += val * mult
elif isinstance(obj[0].type, Floor):
for i, val in enumerate(obj[1].values):
floor_vals[i] += val * mult
# create the new totalled data collection
new_header = base_data.header.duplicate()
if 'Surface' in new_header.metadata:
del new_header.metadata['Surface']
window_head, wall_head, roof_head, floor_head = \
(new_header.duplicate() for i in range(4))
window_head.metadata['type'] = 'Window Energy Flow'
wall_head.metadata['type'] = 'Wall Conduction'
roof_head.metadata['type'] = 'Roof Conduction'
floor_head.metadata['type'] = 'Floor Conduction'
all_headers = [window_head, wall_head, roof_head, floor_head]
all_values = [window_vals, wall_vals, roof_vals, floor_vals]
all_data = []
for head, vals in zip(all_headers, all_values):
if isinstance(base_data, HourlyContinuousCollection):
all_data.append(HourlyContinuousCollection(head, vals))
else: # it's one of the data collections that needs datetimes
all_data.append(base_data.__class__(head, vals, base_data.datetimes))
return all_data
def _area_as_meters_feet(self, base_area):
"""Convert a base area to meters or feet depending on the the assigned units."""
if self.units in ('Meters', 'Feet'): # no need to do unit conversions
return base_area
elif self.units == 'Millimeters': # convert to meters
return base_area / 1000000.0
elif self.units == 'Inches': # convert to feet
return base_area / 144.0
else: # assume it's cm; convert to meters
return base_area / 10000.0
@staticmethod
def _normalize_collection(collection, area, is_ip):
"""Normalize a given data collection by floor area.
Args:
collection: A data collection to be normalized.
area: The floor area the the collection is normalize by.
is_ip: Boolean to note whether the area is in square meters or square feet.
"""
new_vals = [val / area for val in collection.values]
head = collection.header
new_unit = '{}/m2'.format(head.unit) if not is_ip else '{}/ft2'.format(head.unit)
new_header = Header(
EnergyIntensity(), new_unit, head.analysis_period, head.metadata)
if isinstance(collection, HourlyContinuousCollection):
return HourlyContinuousCollection(new_header, new_vals)
else: # it's one of the data collections that needs datetimes
return collection.__class__(new_header, new_vals, collection.datetimes)
@staticmethod
def _check_data_matching(rooms, data):
return None if data is None or len(match_rooms_to_data(data, rooms)) == 0 \
else data
[docs]
def ToString(self):
"""Overwrite .NET ToString."""
return self.__repr__()
def __repr__(self):
"""Load Balance representation."""
return 'Load Balance: [{} Rooms]'.format(len(self.rooms))