# coding=utf-8
"""Complete definition of ventilation in a simulation, including schedule and load."""
from __future__ import division
from honeybee._lockable import lockable
from honeybee.typing import float_positive
from ._base import _LoadBase
from ..schedule.ruleset import ScheduleRuleset
from ..schedule.fixedinterval import ScheduleFixedInterval
from ..reader import parse_idf_string
from ..writer import generate_idf_string
from ..properties.extension import VentilationProperties
import honeybee_energy.lib.scheduletypelimits as _type_lib
[docs]
@lockable
class Ventilation(_LoadBase):
"""A complete definition of ventilation, including schedules and load.
Note the the 4 ventilation types (flow_per_person, flow_per_area, flow_per_zone,
and air_changes_per_hour) are ultimately added together to yield the ventilation
design flow rate used in the simulation.
Args:
identifier: Text string for a unique Ventilation ID. Must be < 100 characters
and not contain any EnergyPlus special characters. This will be used to
identify the object across a model and in the exported IDF.
flow_per_person: A numerical value for the intensity of ventilation
in m3/s per person. Note that setting this value here does not mean
that ventilation is varied based on real-time occupancy but rather
that the design level of ventilation is determined using this value
and the People object of the zone. To vary ventilation in real time,
the ventilation schedule should be used. Most ventilation standards
support that a value of 0.01 m3/s (10 L/s or ~20 cfm) per person is
sufficient to remove odors. Accordingly, setting this value to 0.01
and using 0 for the following ventilation terms will often be suitable
for many applications. Default: 0.
flow_per_area: A numerical value for the intensity of ventilation in m3/s
per square meter of floor area. Default: 0.
flow_per_zone: A numerical value for the design level of ventilation
in m3/s for the entire zone. Default: 0.
air_changes_per_hour: A numerical value for the design level of ventilation
in air changes per hour (ACH) for the entire zone. This is particularly
helpful for hospitals, where ventilation standards are often given
in ACH. Default: 0.
schedule: An optional ScheduleRuleset or ScheduleFixedInterval for the
ventilation over the course of the year. The type of this schedule
should be Fractional and the fractional values will get multiplied by
the total design flow rate (determined from the sum of the other
4 fields) to yield a complete ventilation profile. Setting
this schedule to be the occupancy schedule of the zone will mimic demand
controlled ventilation. If None, the design level of ventilation will
be used throughout all timesteps of the simulation. Default: None.
Properties:
* identifier
* display_name
* flow_per_person
* flow_per_area
* flow_per_zone
* air_changes_per_hour
* schedule
* user_data
"""
__slots__ = ('_flow_per_person', '_flow_per_area', '_flow_per_zone',
'_air_changes_per_hour', '_schedule')
def __init__(self, identifier, flow_per_person=0, flow_per_area=0, flow_per_zone=0,
air_changes_per_hour=0, schedule=None):
"""Initialize Ventilation."""
_LoadBase.__init__(self, identifier)
self.flow_per_person = flow_per_person
self.flow_per_area = flow_per_area
self.flow_per_zone = flow_per_zone
self.air_changes_per_hour = air_changes_per_hour
self.schedule = schedule
self._properties = VentilationProperties(self)
@property
def flow_per_person(self):
"""Get or set the intensity of ventilation in m3/s per person.
Note that setting this value here does not mean that ventilation is varied
based on real-time occupancy but rather that the design level of ventilation
is determined using this value and the People object of the zone. To vary
ventilation in real time, the ventilation schedule should be used or demand
controlled ventilation options should be set on the HVAC system.
Most ventilation standards support that a value of 0.01 m3/s (10 L/s or ~20 cfm)
per person is sufficient to remove odors. Accordingly, setting this value to
0.01 and using 0 for the following ventilation terms will often be suitable
for many applications.
"""
return self._flow_per_person
@flow_per_person.setter
def flow_per_person(self, value):
self._flow_per_person = float_positive(value, 'ventilation flow per person') if \
value is not None else 0
@property
def flow_per_area(self):
"""Get or set the ventilation in m3/s per square meter of zone floor area."""
return self._flow_per_area
@flow_per_area.setter
def flow_per_area(self, value):
self._flow_per_area = float_positive(value, 'ventilation flow per area') if \
value is not None else 0
@property
def flow_per_zone(self):
"""Get or set the ventilation in m3/s per zone."""
return self._flow_per_zone
@flow_per_zone.setter
def flow_per_zone(self, value):
self._flow_per_zone = float_positive(value, 'ventilation flow per zone')if \
value is not None else 0
@property
def air_changes_per_hour(self):
"""Get or set the ventilation in air changes per hour (ACH)."""
return self._air_changes_per_hour
@air_changes_per_hour.setter
def air_changes_per_hour(self, value):
self._air_changes_per_hour = \
float_positive(value, 'ventilation air changes per hour') if \
value is not None else 0
@property
def schedule(self):
"""Get or set a ScheduleRuleset or ScheduleFixedInterval for ventilation."""
return self._schedule
@schedule.setter
def schedule(self, value):
if value is not None:
assert isinstance(value, (ScheduleRuleset, ScheduleFixedInterval)), \
'Expected ScheduleRuleset or ScheduleFixedInterval for Ventilation ' \
'schedule. Got {}.'.format(type(value))
self._check_fractional_schedule_type(value, 'Ventilation')
value.lock() # lock editing in case schedule has multiple references
self._schedule = value
[docs]
@classmethod
def from_idf(cls, idf_string, schedule_dict):
"""Create an Ventilation object from an EnergyPlus IDF text string.
Args:
idf_string: A text string fully describing an EnergyPlus
DesignSpecification:OutdoorAir definition.
schedule_dict: A dictionary with schedule identifiers as keys and honeybee
schedule objects as values (either ScheduleRuleset or
ScheduleFixedInterval). These will be used to assign the schedules to
the Ventilation object.
Returns:
ventilation -- An Ventilation object loaded from the idf_string.
"""
# check the inputs
ep_strs = parse_idf_string(idf_string, 'DesignSpecification:OutdoorAir,')
# extract the numerical properties from the string
person = 0.00944
area = 0
zone = 0
ach = 0
try:
person = ep_strs[2] if ep_strs[2] != '' else 0.00944
area = ep_strs[3] if ep_strs[3] != '' else 0
zone = ep_strs[4] if ep_strs[4] != '' else 0
ach = ep_strs[5] if ep_strs[5] != '' else 0
except IndexError:
pass # shorter ventilation definition lacking values
# change the values to 0 if 'Sum' method is not used
try:
if ep_strs[1].lower() == 'sum':
pass
elif ep_strs[1].lower() == 'flow/person':
area, zone, ach = 0, 0, 0
elif ep_strs[1].lower() == 'flow/area':
person, zone, ach = 0, 0, 0
elif ep_strs[1].lower() == 'flow/zone':
person, area, ach = 0, 0, 0
elif ep_strs[1].lower() == 'airchanges/hour':
person, area, zone = 0, 0, 0
else:
raise ValueError('DesignSpecification:OutdoorAir {} method '
'is not supported by honeybee.'.format(ep_strs[1]))
except IndexError: # EnergyPlus defaults to flow/person
area, zone, ach = 0, 0, 0
# extract the schedules from the string
try:
try:
sched = schedule_dict[ep_strs[6]] if ep_strs[6] != '' else None
except KeyError as e:
raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
except IndexError: # No schedule given
sched = None
# return the object and the zone id for the object
obj_id = ep_strs[0].split('..')[0]
ventilation = cls(obj_id, person, area, zone, ach, sched)
return ventilation
[docs]
@classmethod
def from_dict(cls, data):
"""Create a Ventilation object from a dictionary.
Note that the dictionary must be a non-abridged version for this classmethod
to work.
Args:
data: A Ventilation dictionary in following the format below.
.. code-block:: python
{
"type": 'Ventilation',
"identifier": 'Office_Ventilation_0010_000050_0_0',
"display_name": 'Office Ventilation',
"flow_per_person": 0.01, # flow per person
"flow_per_area": 0.0005, # flow per square meter of floor area
"flow_per_zone": 0, # flow per zone
"air_changes_per_hour": 0, # air changes per hour
"schedule": {} # ScheduleRuleset/ScheduleFixedInterval dictionary
}
"""
assert data['type'] == 'Ventilation', \
'Expected Ventilation dictionary. Got {}.'.format(data['type'])
person, area, zone, ach = cls._optional_dict_keys(data)
sched = cls._get_schedule_from_dict(data['schedule']) if 'schedule' in data and \
data['schedule'] is not None else None
new_obj = cls(data['identifier'], person, area, zone, ach, sched)
if 'display_name' in data and data['display_name'] is not None:
new_obj.display_name = data['display_name']
if 'user_data' in data and data['user_data'] is not None:
new_obj.user_data = data['user_data']
if 'properties' in data and data['properties'] is not None:
new_obj.properties._load_extension_attr_from_dict(data['properties'])
return new_obj
[docs]
@classmethod
def from_dict_abridged(cls, data, schedule_dict):
"""Create a Ventilation object from an abridged dictionary.
Args:
data: A VentilationAbridged dictionary in following the format below.
schedule_dict: A dictionary with schedule identifiers as keys and
honeybee schedule objects as values (either ScheduleRuleset or
ScheduleFixedInterval). These will be used to assign the schedules
to the Ventilation object.
.. code-block:: python
{
"type": 'VentilationAbridged',
"identifier": 'Office_Ventilation_0010_000050_0_0',
"display_name": 'Office Ventilation',
"flow_per_person": 0.01, # flow per person
"flow_per_area": 0.0005, # flow per square meter of floor area
"flow_per_zone": 0, # flow per zone
"air_changes_per_hour": 0, # air changes per hour
"schedule": "Office Ventilation Schedule" # Schedule identifier
}
"""
assert data['type'] == 'VentilationAbridged', \
'Expected VentilationAbridged dictionary. Got {}.'.format(data['type'])
person, area, zone, ach = cls._optional_dict_keys(data)
sched = None
if 'schedule' in data and data['schedule'] is not None:
try:
sched = schedule_dict[data['schedule']]
except KeyError as e:
raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
new_obj = cls(data['identifier'], person, area, zone, ach, sched)
if 'display_name' in data and data['display_name'] is not None:
new_obj.display_name = data['display_name']
if 'user_data' in data and data['user_data'] is not None:
new_obj.user_data = data['user_data']
if 'properties' in data and data['properties'] is not None:
new_obj.properties._load_extension_attr_from_dict(data['properties'])
return new_obj
[docs]
def to_idf(self, zone_identifier):
"""IDF string representation of Ventilation object.
Note that this method only outputs a single string for the DesignSpecification:
OutdoorAir object and, to write everything needed to describe the object
into an IDF, this object's schedule must also be written.
Args:
zone_identifier: Text for the zone identifier that the Ventilation
object is assigned to.
.. code-block:: shell
DesignSpecification:OutdoorAir
ZoneOAData, !- Name
Sum, !- Outdoor Air Method
0.00944, !- Outdoor Air Flow per Person {m3/s}
0.00305, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}
, !- Outdoor Air Flow per Zone {m3/s}
, !- Outdoor Air Flow Air Changes per Hour
OARequirements Sched; !- Outdoor Air Schedule Name
"""
sched = self.schedule.identifier if self.schedule is not None else ''
vent_obj_identifier = '{}..{}'.format(self.identifier, zone_identifier)
values = (vent_obj_identifier, 'Sum', self.flow_per_person, self.flow_per_area,
self.flow_per_zone, self.air_changes_per_hour, sched)
comments = ('name', 'flow rate method', 'flow per person {m3/s-person}',
'flow per floor area {m3/s-m2}', 'flow per zone {m3/s}',
'air changes per hour {1/hr}', 'outdoor air schedule name')
return generate_idf_string('DesignSpecification:OutdoorAir', values, comments)
[docs]
def to_dict(self, abridged=False):
"""Ventilation dictionary representation.
Args:
abridged: Boolean to note whether the full dictionary describing the
object should be returned (False) or just an abridged version (True),
which only specifies the identifiers of schedules. Default: False.
"""
base = {'type': 'Ventilation'} if not abridged \
else {'type': 'VentilationAbridged'}
base['identifier'] = self.identifier
if self.flow_per_person != 0:
base['flow_per_person'] = self.flow_per_person
if self.flow_per_area != 0:
base['flow_per_area'] = self.flow_per_area
if self.flow_per_zone != 0:
base['flow_per_zone'] = self.flow_per_zone
if self.air_changes_per_hour != 0:
base['air_changes_per_hour'] = self.air_changes_per_hour
if self.schedule is not None:
base['schedule'] = self.schedule.to_dict() if not \
abridged else self.schedule.identifier
if self._display_name is not None:
base['display_name'] = self.display_name
if self._user_data is not None:
base['user_data'] = self.user_data
prop_dict = self.properties.to_dict()
if prop_dict is not None:
base['properties'] = prop_dict
return base
[docs]
@staticmethod
def average(identifier, ventilations, weights=None, timestep_resolution=1):
"""Get a Ventilation object that's an average between other Ventilations.
Args:
identifier: Text string for a unique ID for the new averaged Ventilation.
Must be < 100 characters and not contain any EnergyPlus special
characters. This will be used to identify the object across a model
and in the exported IDF.
ventilations: A list of Ventilation objects that will be averaged
together to make a new Ventilation.
weights: An optional list of fractional numbers with the same length
as the input ventilations. These will be used to weight each of the
Ventilation objects in the resulting average. Note that these weights
can sum to less than 1 in which case the average flow rates
will assume 0 for the unaccounted fraction of the weights.
timestep_resolution: An optional integer for the timestep resolution
at which the schedules will be averaged. Any schedule details
smaller than this timestep will be lost in the averaging process.
Default: 1.
"""
weights, u_weights = \
Ventilation._check_avg_weights(ventilations, weights, 'Ventilation')
# calculate the average values
person = sum([vent.flow_per_person * w
for vent, w in zip(ventilations, weights)])
area = sum([vent.flow_per_area * w
for vent, w in zip(ventilations, weights)])
zone = sum([vent.flow_per_zone * w
for vent, w in zip(ventilations, weights)])
ach = sum([vent.air_changes_per_hour * w
for vent, w in zip(ventilations, weights)])
# calculate the average schedules
scheds = [vent.schedule for vent in ventilations]
if all(val is None for val in scheds):
sched = None
else:
full_vent = ScheduleRuleset.from_constant_value(
'Full Ventilation', 1, _type_lib.fractional)
for i, sch in enumerate(scheds):
if sch is None:
scheds[i] = full_vent
sched = Ventilation._average_schedule(
'{} Schedule'.format(identifier), scheds, u_weights, timestep_resolution)
# return the averaged object
return Ventilation(identifier, person, area, zone, ach, sched)
[docs]
@staticmethod
def combine_room_ventilations(identifier, rooms, timestep_resolution=1):
"""Get a Ventilation object that represents the sum across rooms.
In this process of combining ventilation requirements, the following
rules hold: 1. Total flow rates in m3/s are simply added together. 2. Flow per
floor area gets recomputed using the floor areas of each room. 3. ACH flow
gets recomputed using the volumes of each room in the inputs. 4. Flow per
person gets set based on whichever room has the highest ventilation
requirement per person.
In the case of ventilation schedules, the strictest schedule governs and
note that the absence of a ventilation schedule means the schedule is
Always On. So, if one room has a ventilation schedule and the other
does not, then the schedule essentially gets removed. If each room has
a different ventilation schedule, then a new schedule will be created
using the maximum value across the two schedules at each timestep.
Args:
identifier: Text string for a unique ID for the new Ventilation object.
Must be < 100 characters and not contain any EnergyPlus special
characters. This will be used to identify the object across a model
and in the exported IDF.
rooms: A list of Rooms that will have their Ventilation objects
combined to make a new Ventilation.
timestep_resolution: An optional integer for the timestep resolution at
which conflicting ventilation schedules will be resolved. (Default: 1).
"""
# compute weights based on floor areas and volumes
ventilations, floor_areas, volumes = [], [], []
for room in rooms:
vent = Ventilation() if room.properties.energy.ventilation is None else \
room.properties.energy.ventilation
ventilations.append(vent)
floor_areas.append(room.floor_area)
volumes.append(room.volume)
total_floor = sum(floor_areas)
total_volume = sum(volumes)
floor_weights = [ar / total_floor for ar in floor_areas]
vol_weights = [vol / total_volume for vol in volumes]
# calculate the average values
person = max(vent.flow_per_person for vent in ventilations)
area = sum([vent.flow_per_area * w
for vent, w in zip(ventilations, floor_weights)])
zone = sum(vent.flow_per_zone for vent in ventilations)
ach = sum([vent.air_changes_per_hour * w
for vent, w in zip(ventilations, vol_weights)])
# calculate the average schedules
scheds = [vent.schedule for vent in ventilations]
if any(val is None for val in scheds):
sched = None
else:
base_sch = scheds[0]
if all(sch is base_sch for sch in scheds) or len(set(scheds)) == 1:
sched = scheds[0]
else:
sched = Ventilation._max_schedule(
'{} Schedule'.format(identifier), scheds, timestep_resolution)
# return the averaged object
return Ventilation(identifier, person, area, zone, ach, sched)
@staticmethod
def _optional_dict_keys(data):
"""Get the optional keys from an Ventilation dictionary."""
person = data['flow_per_person'] if 'flow_per_person' in data else 0
area = data['flow_per_area'] if 'flow_per_area' in data else 0
zone = data['flow_per_zone'] if 'flow_per_zone' in data else 0
ach = data['air_changes_per_hour'] if 'air_changes_per_hour' in data else 0
return person, area, zone, ach
def __key(self):
"""A tuple based on the object properties, useful for hashing."""
return (self.identifier, self.flow_per_person, self.flow_per_area,
self.flow_per_zone, self.air_changes_per_hour, hash(self.schedule))
def __hash__(self):
return hash(self.__key())
def __eq__(self, other):
return isinstance(other, Ventilation) and self.__key() == other.__key()
def __ne__(self, other):
return not self.__eq__(other)
def __copy__(self):
new_obj = Ventilation(
self.identifier, self.flow_per_person, self.flow_per_area,
self.flow_per_zone, self.air_changes_per_hour, self.schedule)
new_obj._display_name = self._display_name
new_obj._user_data = None if self._user_data is None else self._user_data.copy()
new_obj._properties._duplicate_extension_attr(self._properties)
return new_obj
def __repr__(self):
return 'Ventilation: {} [{} m3/s-person] [{} m3/s-m2] [{} ACH]'.format(
self.display_name, round(self.flow_per_person, 4),
round(self.flow_per_area, 6), round(self.air_changes_per_hour, 2))