# coding=utf-8
"""Complete definition of service hot water, including schedule and load."""
from __future__ import division
from honeybee._lockable import lockable
from honeybee.typing import float_in_range, float_positive, clean_and_id_ep_string
from ._base import _LoadBase
from ..schedule.ruleset import ScheduleRuleset
from ..schedule.fixedinterval import ScheduleFixedInterval
from ..reader import parse_idf_string
from ..writer import generate_idf_string
from ..lib.schedules import always_on
from ..properties.extension import ServiceHotWaterProperties
[docs]
@lockable
class ServiceHotWater(_LoadBase):
"""A complete definition of service hot water, including schedules and load.
Args:
identifier: Text string for a unique ServiceHotWater ID. Must be < 100 characters
and not contain any EnergyPlus special characters. This will be used to
identify the object across a model and in the exported IDF.
flow_per_area: A numerical value for the total volume flow rate of water
per unit area of floor (L/h-m2).
schedule: A ScheduleRuleset or ScheduleFixedInterval for the use of hot water
over the course of the year. The type of this schedule should be
Fractional and the fractional values will get multiplied by the
flow_per_area to yield a complete water usage profile.
target_temperature: The target temperature of the water out of the tap in
Celsius. This the temperature after the hot water has been mixed
with cold water from the water mains. The default essentially assumes
that the flow_per_area on this object is only for water straight out
of the water heater. (Default: 60C).
sensible_fraction: A number between 0 and 1 for the fraction of the total
hot water load given off as sensible heat in the zone. (Default: 0.2).
latent_fraction: A number between 0 and 1 for the fraction of the total
hot water load that is latent (as opposed to sensible). (Default: 0.05).
Properties:
* identifier
* display_name
* flow_per_area
* schedule
* target_temperature
* sensible_fraction
* latent_fraction
* lost_fraction
* standard_watts_per_area
* user_data
"""
__slots__ = ('_flow_per_area', '_schedule', '_target_temperature',
'_sensible_fraction', '_latent_fraction')
WATER_HEAT_CAPACITY = 4179600 # volumetric heat capacity of water at 25 C (J/m3-K)
def __init__(self, identifier, flow_per_area, schedule, target_temperature=60,
sensible_fraction=0.2, latent_fraction=0.05):
"""Initialize ServiceHotWater."""
_LoadBase.__init__(self, identifier)
self._latent_fraction = 0 # starting value so that check runs correctly
self.flow_per_area = flow_per_area
self.schedule = schedule
self.target_temperature = target_temperature
self.sensible_fraction = sensible_fraction
self.latent_fraction = latent_fraction
self._properties = ServiceHotWaterProperties(self)
@property
def flow_per_area(self):
"""Get or set the hot water volume flow rate per unit area of floor (L/h-m2)."""
return self._flow_per_area
@flow_per_area.setter
def flow_per_area(self, value):
self._flow_per_area = float_positive(value, 'hot water flow per area')
@property
def schedule(self):
"""Get or set a ScheduleRuleset or ScheduleFixedInterval for hot water usage."""
return self._schedule
@schedule.setter
def schedule(self, value):
assert isinstance(value, (ScheduleRuleset, ScheduleFixedInterval)), \
'Expected ScheduleRuleset or ScheduleFixedInterval for hot water ' \
'schedule. Got {}.'.format(type(value))
self._check_fractional_schedule_type(value, 'ServiceHotWater')
value.lock() # lock editing in case schedule has multiple references
self._schedule = value
@property
def target_temperature(self):
"""Get or set the temperature out of the tap (C)."""
return self._target_temperature
@target_temperature.setter
def target_temperature(self, value):
self._target_temperature = float_in_range(
value, 0.0, 100.0, 'hot water target temperature')
@property
def sensible_fraction(self):
"""Get or set the fraction of hot water heat given off as zone sensible heat."""
return self._sensible_fraction
@sensible_fraction.setter
def sensible_fraction(self, value):
self._sensible_fraction = float_in_range(
value, 0.0, 1.0, 'hot water sensible fraction')
self._check_fractions()
@property
def latent_fraction(self):
"""Get or set the fraction of hot water heat that is latent."""
return self._latent_fraction
@latent_fraction.setter
def latent_fraction(self, value):
self._latent_fraction = float_in_range(
value, 0.0, 1.0, 'hot water latent fraction')
self._check_fractions()
@property
def lost_fraction(self):
"""Get the fraction of hot water heat that is lost down the drain."""
return 1 - self._sensible_fraction - self._latent_fraction
@property
def standard_watts_per_area(self):
"""Get the hot water power density (W/m2) assuming a standard mains temperature.
Standard water mains temperature is 10C, which is the default water mains
temperature in EnergyPlus when none is specified.
"""
flow_m3_s_m2 = self._flow_per_area / (1000. * 3600.)
delta_t = self.target_temperature - 10
return flow_m3_s_m2 * self.WATER_HEAT_CAPACITY * delta_t
[docs]
def set_watts_per_area(self, watts_per_area, water_mains_temperature=10):
"""Set the volume flow rate per floor area using the hot water power density.
Args:
watts_per_area: The desired hot water power density (W/m2).
water_mains_temperature: The average annual temperature of the water
mains that supply the water heater in Celsius. This should be
close to the average annual temperature. (Default: 10C).
"""
delta_t = self.target_temperature - water_mains_temperature
flow_m3_s_m2 = watts_per_area / (self.WATER_HEAT_CAPACITY * delta_t)
self._flow_per_area = flow_m3_s_m2 * 1000. * 3600.
[docs]
def diversify(self, count, flow_stdev=20, schedule_offset=1, timestep=1,
schedule_indices=None):
"""Get an array of diversified ServiceHotWater derived from this "average" one.
Approximately 2/3 of the schedules in the output objects will be offset
from the mean by the input schedule_offset (1/3 ahead and another 1/3 behind).
Args:
count: An positive integer for the number of diversified objects to
generate from this mean object.
flow_stdev: A number between 0 and 100 for the percent of the flow_per_area
representing one standard deviation of diversification from
the mean. (Default 20 percent).
schedule_offset: A positive integer for the number of timesteps at which
the lighting schedule of the resulting objects will be shifted - roughly
1/3 of the objects ahead and another 1/3 behind. (Default: 1).
timestep: An integer for the number of timesteps per hour at which the
shifting is occurring. This must be a value between 1 and 60, which
is evenly divisible by 60. 1 indicates that each step is an hour
while 60 indicates that each step is a minute. (Default: 1).
schedule_indices: An optional list of integers from 0 to 2 with a length
equal to the input count, which will be used to set whether a given
schedule is behind (0), ahead (2), or the same (1). This can be
used to coordinate schedules across diversified programs. If None
a random list of integers will be genrated. (Default: None).
"""
# generate shifted schedules and a gaussian distribution of flow_per_area
usage_schs = self._shift_schedule(self.schedule, schedule_offset, timestep)
stdev = self.flow_per_area * (flow_stdev / 100)
new_loads, sch_ints = self._gaussian_values(count, self.flow_per_area, stdev)
sch_ints = sch_ints if schedule_indices is None else schedule_indices
# generate the new objects and return them
new_objects = []
for load_val, sch_int in zip(new_loads, sch_ints):
new_obj = self.duplicate()
new_obj.identifier = clean_and_id_ep_string(self.identifier)
new_obj.flow_per_area = load_val
new_obj.schedule = usage_schs[sch_int]
new_objects.append(new_obj)
return new_objects
[docs]
@classmethod
def from_watts_per_area(
cls, identifier, watts_per_area, schedule, target_temperature=60,
sensible_fraction=0.2, latent_fraction=0.05, water_mains_temperature=10):
"""Create a ServiceHotWater object from hot water power density (W/m2).
Args:
identifier: Text string for a unique ServiceHotWater ID. Must be < 100
characters and not contain any EnergyPlus special characters.
This will be used to identify the object across a model and in
the exported IDF.
watts_per_area: The desired hot water power density (W/m2).
schedule: A ScheduleRuleset or ScheduleFixedInterval for the use of hot
water over the course of the year. The type of this schedule should be
Fractional and the fractional values will get multiplied by the
watts_per_area to yield a complete hot water profile.
target_temperature: The target temperature of the water out of the tap in
Celsius. This the temperature after the hot water has been mixed
with cold water from the water mains. The default essentially assumes
that the flow_per_area on this object is only for water straight out
of the water heater. (Default: 60C).
sensible_fraction: A number between 0 and 1 for the fraction of the total
hot water load given off as sensible heat in the zone. (Default: 0.2).
latent_fraction: A number between 0 and 1 for the fraction of the total
hot water load that is latent (as opposed to sensible). (Default: 0.05).
water_mains_temperature: The average annual temperature of the water
mains that supply the water heater in Celsius. This should be
close to the average annual temperature. (Default: 10C).
"""
shw = cls(identifier, 0, schedule, target_temperature,
sensible_fraction, latent_fraction)
shw.set_watts_per_area(watts_per_area, water_mains_temperature)
return shw
[docs]
@classmethod
def from_idf(cls, idf_string, floor_area, schedule_dict):
"""Create a ServiceHotWater object from an IDF WaterUse:Equipment string.
Args:
idf_string: A text string of an EnergyPlus WaterUse:Equipment definition.
floor_area: A number for the floor area of the room to which the
WaterUse:Equipment definition is assigned.
schedule_dict: A dictionary with schedule identifiers as keys and honeybee
schedule objects as values (either ScheduleRuleset or
ScheduleFixedInterval). These will be used to assign the schedules to
the ServiceHotWater object.
Returns:
A tuple with two elements
- shw: A ServiceHotWater object loaded from the idf_string.
- zone_identifier: The identifier of the zone to which the ServiceHotWater
object should be assigned. Will be None if no zone is found.
- total_flow: Number for the absolute flow rate of the ServiceHotWater
object in L/h.
"""
# check the inputs
ep_strs = parse_idf_string(idf_string, 'WaterUse:Equipment,')
# extract the flow rate
total_flow = float(ep_strs[2]) * 1000. * 3600.
flow_per_area = total_flow / floor_area if floor_area != 0 else 0
# extract the schedule from the string
sched = always_on
if len(ep_strs) > 3 and ep_strs[3] != '':
try:
sched = schedule_dict[ep_strs[3]]
except KeyError as e:
raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
# try to extract the target temperature
target = cls._schedule_single_value(ep_strs, 4, None, schedule_dict)
sens = cls._schedule_single_value(ep_strs, 8, 0, schedule_dict)
latent = cls._schedule_single_value(ep_strs, 9, 0, schedule_dict)
# return the hot water object and the zone id if it exists
obj_id = ep_strs[0].split('..')[0]
zone_id = ep_strs[7] if len(ep_strs) > 7 and ep_strs[7] != '' else None
shw = cls(obj_id, flow_per_area, sched, target, sens, latent)
return shw, zone_id, total_flow
[docs]
@classmethod
def from_dict(cls, data):
"""Create a ServiceHotWater object from a dictionary.
Note that the dictionary must be a non-abridged version for this classmethod
to work.
Args:
data: A ServiceHotWater dictionary in following the format below.
.. code-block:: python
{
"type": 'ServiceHotWater',
"identifier": 'Residential_SHW_015',
"display_name": 'Residential Hot Water',
"flow_per_area": 0.15, # how water L/h per square meter of floor area
"schedule": {}, # ScheduleRuleset/ScheduleFixedInterval dictionary
"target_temperature": 60, # target temperature in C
"sensible_fraction": 0.2, # fraction of heat that is sensible
"latent_fraction": 0.05 # fraction of heat that is latent
}
"""
assert data['type'] == 'ServiceHotWater', \
'Expected ServiceHotWater dictionary. Got {}.'.format(data['type'])
sched = cls._get_schedule_from_dict(data['schedule'])
target, sens_fract, lat_fract = cls._optional_dict_keys(data)
new_obj = cls(data['identifier'], data['flow_per_area'], sched,
target, sens_fract, lat_fract)
if 'user_data' in data and data['user_data'] is not None:
new_obj.user_data = data['user_data']
if 'properties' in data and data['properties'] is not None:
new_obj.properties._load_extension_attr_from_dict(data['properties'])
return cls._apply_optional_dict_props(new_obj, data)
[docs]
@classmethod
def from_dict_abridged(cls, data, schedule_dict):
"""Create a ServiceHotWater object from an abridged dictionary.
Args:
data: A ServiceHotWaterAbridged dictionary in following the format below.
schedule_dict: A dictionary with schedule identifiers as keys and
honeybee schedule objects as values (either ScheduleRuleset or
ScheduleFixedInterval). These will be used to assign the schedules
to the ServiceHotWater object.
.. code-block:: python
{
"type": 'ServiceHotWaterAbridged',
"identifier": 'Residential_SHW_015',
"display_name": 'Residential Hot Water',
"flow_per_area": 0.15, # how water L/h per square meter of floor area
"schedule": 'Residential DHW Usage', # schedule identifier
"target_temperature": 60, # target temperature in C
"sensible_fraction": 0.2, # fraction of heat that is sensible
"latent_fraction": 0.05 # fraction of heat that is latent
}
"""
assert data['type'] == 'ServiceHotWaterAbridged', \
'Expected ServiceHotWaterAbridged dictionary. Got {}.'.format(data['type'])
try:
sched = schedule_dict[data['schedule']]
except KeyError as e:
raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
target, sens_fract, lat_fract = cls._optional_dict_keys(data)
new_obj = cls(data['identifier'], data['flow_per_area'], sched,
target, sens_fract, lat_fract)
if 'user_data' in data and data['user_data'] is not None:
new_obj.user_data = data['user_data']
if 'properties' in data and data['properties'] is not None:
new_obj.properties._load_extension_attr_from_dict(data['properties'])
return cls._apply_optional_dict_props(new_obj, data)
[docs]
def to_idf(self, room):
"""IDF string representation of ServiceHotWater object.
Note that this method only outputs a string for the WaterUse:Equipment
object and a Schedule:Constant for the target temperature. Thus, to write
everything needed to describe the object into an IDF, this object's
schedule must also be written.
Args:
room: The honeybee Room to which this ServiceHotWater object is being
applied. This is needed for both to convert the flow_per_area to
an absolute flow and to assign the hot water object to the Room
(such that sensible/latent heat gains are transferred to the Room).
Returns:
A tuple with two values.
- water_use: A WaterUse:Equipment string for the ServiceHotWater.
- schedules: A list of Schedule:Constant strings for the schedules
needed to describe the target temperatures as well as the sensible
and latent fractions.
.. code-block:: shell
WaterUse:Equipment,
Showers, !- Name
Domestic Hot Water, !- End-Use Subcategory
0.0002, !- Peak Flow Rate {m3/s}
Shower Schedule, !- Flow Rate Fraction Schedule Name
Shower Target Temp, !- Target Temperature Schedule Name
Hot Water Temp, !- Hot Water Supply Temperature Schedule Name
, !- Cold Water Supply Temperature Schedule Name
Shower Room, !- Zone Name
Sensible Frac Schedule, !- Sensible Fraction Schedule Name
Latent Frac Schedule; !- Latent Fraction Schedule Name
"""
# create the Schedule:Constant strings
u_id = '{}..{}'.format(self.identifier, room.identifier)
s_com, s_obj = ('name', 'schedule type limits', 'value'), 'Schedule:Constant'
schedules = []
sens_sch, lat_sch = '', ''
hot_fields = ('{}_SHW_Target'.format(u_id), '', self.target_temperature)
schedules.append(generate_idf_string(s_obj, hot_fields, s_com))
if self.sensible_fraction != 0:
sens_sch = '{}_SHW_Sensible'.format(u_id)
sens_fields = (sens_sch, '', self.sensible_fraction)
schedules.append(generate_idf_string(s_obj, sens_fields, s_com))
if self.latent_fraction != 0:
lat_sch = '{}_SHW_Latent'.format(u_id)
lat_fields = (lat_sch, '', self.latent_fraction)
schedules.append(generate_idf_string(s_obj, lat_fields, s_com))
# create the Water Use string
total_flow = (self.flow_per_area / 3600000.) * room.floor_area
values = (u_id, 'General', total_flow, self.schedule.identifier, hot_fields[0],
hot_fields[0], '', room.identifier, sens_sch, lat_sch)
comments = ('name', 'end use subcategory', 'peak flow rate {m/s}',
'schedule name', 'target temp schedule', 'hot water temp schedule',
'cold water temp schedule', 'zone name',
'sensible fraction', 'latent fraction')
water_use = generate_idf_string('WaterUse:Equipment', values, comments)
return water_use, schedules
[docs]
def to_dict(self, abridged=False):
"""ServiceHotWater dictionary representation.
Args:
abridged: Boolean to note whether the full dictionary describing the
object should be returned (False) or just an abridged version (True),
which only specifies the identifiers of schedules. (Default: False).
"""
base = {'type': 'ServiceHotWater'} if not abridged else \
{'type': 'ServiceHotWaterAbridged'}
base['identifier'] = self.identifier
base['flow_per_area'] = self.flow_per_area
base['target_temperature'] = self.target_temperature
base['sensible_fraction'] = self.sensible_fraction
base['latent_fraction'] = self.latent_fraction
base['schedule'] = self.schedule.to_dict() if not \
abridged else self.schedule.identifier
if self._display_name is not None:
base['display_name'] = self.display_name
if self._user_data is not None:
base['user_data'] = self.user_data
prop_dict = self.properties.to_dict()
if prop_dict is not None:
base['properties'] = prop_dict
return base
[docs]
@staticmethod
def average(identifier, hot_waters, weights=None, timestep_resolution=1):
"""Get a ServiceHotWater object that's a weighted average between other objects.
Args:
identifier: Text string for a unique ID for the new averaged ServiceHotWater.
Must be < 100 characters and not contain any EnergyPlus special
characters. This will be used to identify the object across a model
and in the exported IDF.
hot_waters: A list of ServiceHotWater objects that will be averaged
together to make a new ServiceHotWater.
weights: An optional list of fractional numbers with the same length
as the input hot_waters. These will be used to weight each of the
ServiceHotWater objects in the resulting average. Note that these weights
can sum to less than 1 in which case the average flow_per_area will
assume 0 for the unaccounted fraction of the weights.
If None, the objects will be weighted equally. (Default: None).
timestep_resolution: An optional integer for the timestep resolution
at which the schedules will be averaged. Any schedule details
smaller than this timestep will be lost in the averaging process.
(Default: 1).
"""
weights, u_weights = ServiceHotWater._check_avg_weights(
hot_waters, weights, 'ServiceHotWater')
# calculate the average values
flow_d = sum([s.flow_per_area * w for s, w in zip(hot_waters, weights)])
target = sum([s.target_temperature * w for s, w in zip(hot_waters, u_weights)])
sen_fract = sum([s.sensible_fraction * w for s, w in zip(hot_waters, u_weights)])
lat_fract = sum([s.latent_fraction * w for s, w in zip(hot_waters, u_weights)])
# calculate the average schedules
sched = ServiceHotWater._average_schedule(
'{} Schedule'.format(identifier), [s.schedule for s in hot_waters],
u_weights, timestep_resolution)
# return the averaged object
return ServiceHotWater(identifier, flow_d, sched, target, sen_fract, lat_fract)
def _check_fractions(self):
"""Check that the fractions sum to less than 1."""
tot = (self._sensible_fraction, self._latent_fraction)
assert sum(tot) <= 1 + 1e-9, 'Sum of equipment sensible_fraction and ' \
'latent_fraction ({}) is greater than 1.'.format(sum(tot))
@staticmethod
def _schedule_single_value(ep_strs, index, default, schedule_dict):
"""Extract a single value from a schedule."""
if len(ep_strs) > index and ep_strs[index] != '':
try:
t_sched = schedule_dict[ep_strs[index]]
if isinstance(t_sched, ScheduleRuleset):
return t_sched.default_day_schedule.values[0]
else: # FixedInterval schedule
return t_sched.values[0]
except KeyError as e:
raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
return default
@staticmethod
def _optional_dict_keys(data):
"""Get the optional keys from an ServiceHotWater dictionary."""
target = data['target_temperature'] if 'target_temperature' in data else 60
sens_fract = data['sensible_fraction'] if 'sensible_fraction' in data else 0.2
lat_fract = data['latent_fraction'] if 'latent_fraction' in data else 0.05
return target, sens_fract, lat_fract
@staticmethod
def _apply_optional_dict_props(new_obj, data):
"""Apply optional properties like display_name to an object from a dictionary."""
if 'display_name' in data and data['display_name'] is not None:
new_obj.display_name = data['display_name']
return new_obj
def __key(self):
"""A tuple based on the object properties, useful for hashing."""
return (self.identifier, self.flow_per_area, hash(self.schedule),
self.target_temperature, self.sensible_fraction, self.latent_fraction)
def __hash__(self):
return hash(self.__key())
def __eq__(self, other):
return isinstance(other, ServiceHotWater) and self.__key() == other.__key()
def __ne__(self, other):
return not self.__eq__(other)
def __copy__(self):
new_obj = ServiceHotWater(
self.identifier, self.flow_per_area, self.schedule,
self.target_temperature, self.sensible_fraction, self.latent_fraction)
new_obj._display_name = self._display_name
new_obj._user_data = None if self._user_data is None else self._user_data.copy()
new_obj._properties._duplicate_extension_attr(self._properties)
return new_obj
def __repr__(self):
return 'ServiceHotWater: {} [{} L/h-m2] [schedule: {}]'.format(
self.identifier, self.flow_per_area, self.schedule.identifier)