Source code for ladybug_geometry.geometry3d.pointvector

# coding=utf-8
"""3D Vector and 3D Point"""
from __future__ import division

from ..geometry2d.pointvector import Vector2D

import math
import operator


[docs] class Vector3D(object): """3D Vector object. Args: x: Number for the X coordinate. y: Number for the Y coordinate. z: Number for the Z coordinate. Properties: * x * y * z * magnitude * magnitude_squared * is_zero """ __slots__ = ('_x', '_y', '_z') def __init__(self, x=0, y=0, z=0): """Initialize 3D Vector.""" self._x = self._cast_to_float(x) self._y = self._cast_to_float(y) self._z = self._cast_to_float(z)
[docs] @classmethod def from_dict(cls, data): """Create a Vector3D/Point3D from a dictionary. Args: data: A python dictionary in the following format .. code-block:: python { "x": 10, "y": 0, "z": 0 } """ return cls(data['x'], data['y'], data['z'])
[docs] @classmethod def from_array(cls, array): """Initialize a Vector3D/Point3D from an array. Args: array: A tuple or list with three numbers representing the x, y and z values of the point. """ return cls(array[0], array[1], array[2])
[docs] @classmethod def from_vector2d(cls, vector2d, z=0): """Initialize a new Vector3D from an Vector2D and a z value. Args: line2d: A Vector2D to be used to generate the Vector3D. z: A number for the Z coordinate value of the line. """ return cls(vector2d.x, vector2d.y, z)
@property def x(self): """Get the X coordinate.""" return self._x @property def y(self): """Get the Y coordinate.""" return self._y @property def z(self): """Get the Z coordinate.""" return self._z @property def magnitude(self): """Get the magnitude of the vector.""" return self.__abs__() @property def magnitude_squared(self): """Get the magnitude squared of the vector.""" return self.x ** 2 + self.y ** 2 + self.z ** 2 @property def min(self): """Always equal to (0, 0, 0). This property exists to help with bounding box calculations. """ return Point3D(0, 0, 0) @property def max(self): """Always equal to (0, 0, 0). This property exists to help with bounding box calculations. """ return Point3D(0, 0, 0)
[docs] def is_zero(self, tolerance): """Boolean to note whether the vector is within a given zero tolerance. Args: tolerance: The tolerance below which the vector is considered to be a zero vector. """ return abs(self.x) <= tolerance and abs(self.y) <= tolerance and \ abs(self.z) <= tolerance
[docs] def is_equivalent(self, other, tolerance): """Test whether this object is equivalent to another within a certain tolerance. Note that if you want to test whether the coordinate values are perfectly equal to one another, the == operator can be used. Args: other: Another Point3D or Vector3D for which geometric equivalency will be tested. tolerance: The minimum difference between the coordinate values of two objects at which they can be considered geometrically equivalent. Returns: True if equivalent. False if not equivalent. """ return abs(self.x - other.x) <= tolerance and \ abs(self.y - other.y) <= tolerance and \ abs(self.z - other.z) <= tolerance
[docs] def normalize(self): """Get a copy of the vector that is a unit vector (magnitude=1).""" d = self.magnitude try: return Vector3D(self.x / d, self.y / d, self.z / d) except ZeroDivisionError: return self.duplicate()
[docs] def reverse(self): """Get a copy of this vector that is reversed.""" return self.__neg__()
[docs] def dot(self, other): """Get the dot product of this vector with another.""" return self.x * other.x + self.y * other.y + self.z * other.z
[docs] def cross(self, other): """Get the cross product of this vector and another vector.""" return Vector3D(self.y * other.z - self.z * other.y, -self.x * other.z + self.z * other.x, self.x * other.y - self.y * other.x)
[docs] def angle(self, other): """Get the smallest angle between this vector and another.""" try: return math.acos(self.dot(other) / (self.magnitude * other.magnitude)) except ValueError: # python floating tolerance can cause math domain error if self.dot(other) < 0: return math.acos(-1) return math.acos(1)
[docs] def rotate(self, axis, angle): """Get a vector rotated around an axis through an angle. Right hand rule applies: If axis has a positive orientation, rotation will be clockwise. If axis has a negative orientation, rotation will be counterclockwise. Args: axis: A Vector3D axis representing the axis of rotation. angle: An angle in radians. """ return Vector3D._rotate(self, axis, angle)
[docs] def rotate_xy(self, angle): """Get a vector rotated counterclockwise in the XY plane by a certain angle. Args: angle: An angle in radians. """ vec_2 = Vector2D._rotate(self, angle) return Vector3D(vec_2.x, vec_2.y, self.z)
[docs] def reflect(self, normal): """Get a vector that is reflected across a plane with the input normal vector. Args: normal: A Vector3D representing the normal vector for the plane across which the vector will be reflected. THIS VECTOR MUST BE NORMALIZED. """ return Vector3D._reflect(self, normal)
[docs] def project(self, normal): """Get a vector projected into a plane with a given normal. Args: normal: A Vector3D representing the normal vector of the plane into which the plane will be projected. THIS VECTOR MUST BE NORMALIZED. """ return self - normal * self.dot(normal)
[docs] def duplicate(self): """Get a copy of this vector.""" return self.__copy__()
[docs] def to_dict(self): """Get Vector3D as a dictionary.""" return {'type': 'Vector3D', 'x': self.x, 'y': self.y, 'z': self.z}
[docs] def to_array(self): """Get Vector3D/Point3D as a tuple of three numbers""" return (self.x, self.y, self.z)
def _cast_to_float(self, value): """Ensure that an input coordinate value is a float.""" try: number = float(value) except Exception: raise TypeError( 'Coordinates must be numbers. Got {}: {}.'.format(type(value), value)) return number @staticmethod def _reflect(vec, normal): """Hidden reflection method used by both Point3D and Vector3D.""" d = 2 * (vec.x * normal.x + vec.y * normal.y + vec.z * normal.z) return Vector3D(vec.x - d * normal.x, vec.y - d * normal.y, vec.z - d * normal.z) @staticmethod def _rotate(vec, axis, angle): """Hidden rotation method used by both Point3D and Vector3D.""" # Adapted from equations published by Glenn Murray. # http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.html x, y, z = vec.x, vec.y, vec.z u, v, w = axis.x, axis.y, axis.z # Extracted common factors for simplicity and efficiency r2 = u ** 2 + v ** 2 + w ** 2 r = math.sqrt(r2) ct = math.cos(angle) st = math.sin(angle) / r dt = (u * x + v * y + w * z) * (1 - ct) / r2 return Vector3D((u * dt + x * ct + (-w * y + v * z) * st), (v * dt + y * ct + (w * x - u * z) * st), (w * dt + z * ct + (-v * x + u * y) * st)) def __copy__(self): return self.__class__(self.x, self.y, self.z) def __key(self): """A tuple based on the object properties, useful for hashing.""" return (self.x, self.y, self.z) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return isinstance(other, (Vector3D, Point3D)) and \ self.__key() == other.__key() def __ne__(self, other): return not self.__eq__(other) def __nonzero__(self): return self.x != 0 or self.y != 0 or self.z != 0 def __len__(self): return 3 def __getitem__(self, key): return (self.x, self.y, self.z)[key] def __iter__(self): return iter((self.x, self.y, self.z)) def __add__(self, other): # Vector + Point -> Point # Vector + Vector -> Vector if isinstance(other, Point3D): return Point3D(self.x + other.x, self.y + other.y, self.z + other.z) elif isinstance(other, Vector3D): return Vector3D(self.x + other.x, self.y + other.y, self.z + other.z) else: raise TypeError('Cannot add {} and {}'.format( self.__class__.__name__, type(other))) __radd__ = __add__ def __sub__(self, other): # Vector - Point -> Point # Vector - Vector -> Vector if isinstance(other, Point3D): return Point3D(self.x - other.x, self.y - other.y, self.z - other.z) elif isinstance(other, Vector3D): return Vector3D(self.x - other.x, self.y - other.y, self.z - other.z) else: raise TypeError('Cannot subtract {} and {}'.format( self.__class__.__name__, type(other))) def __rsub__(self, other): if isinstance(other, (Vector3D, Point3D)): return Vector3D(other.x - self.x, other.y - self.y, other.z - self.z) else: assert hasattr(other, '__len__') and len(other) == 3, \ 'Cannot subtract types {} and {}'.format( self.__class__.__name__, type(other)) return Vector3D(other.x - self[0], other.y - self[1], other.z - self[2]) def __mul__(self, other): if isinstance(other, (int, float)): return Vector3D(self.x * other, self.y * other, self.z * other) elif isinstance(other, Vector3D): return Vector3D(self.x * other.x, self.y * other.y, self.z * other.z) elif isinstance(other, Point3D): return Point3D(self.x * other.x, self.y * other.y, self.z * other.z) else: raise TypeError('Cannot multiply {} and {}'.format( self.__class__.__name__, type(other))) __rmul__ = __mul__ def __div__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(self.x / other, self.y / other, self.z / other) def __rdiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(other / self.x, other / self.y, other / self.z) def __floordiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(operator.floordiv(self.x, other), operator.floordiv(self.y, other), operator.floordiv(self.z, other)) def __rfloordiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(operator.floordiv(other, self.x), operator.floordiv(other, self.y), operator.floordiv(other, self.z)) def __truediv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(operator.truediv(self.x, other), operator.truediv(self.y, other), operator.truediv(self.z, other)) def __rtruediv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector3D(operator.truediv(other, self.x), operator.truediv(other, self.y), operator.truediv(other, self.z)) def __neg__(self): return Vector3D(-self.x, -self.y, -self.z) __pos__ = __copy__ def __abs__(self): return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
[docs] def ToString(self): """Overwrite .NET ToString.""" return self.__repr__()
def __repr__(self): """Vector3D representation.""" return 'Vector3D (%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)
[docs] class Point3D(Vector3D): """3D Point object. Args: x: Number for the X coordinate. y: Number for the Y coordinate. z: Number for the Z coordinate. Properties: * x * y * z """ __slots__ = ()
[docs] @classmethod def from_point2d(cls, point2d, z=0): """Initialize a new Point3D from an Point2D and a z value. Args: line2d: A Point2D to be used to generate the Point3D. z: A number for the Z coordinate value of the line. """ return cls(point2d.x, point2d.y, z)
@property def min(self): """Always equal to the point itself. This property exists to help with bounding box calculations. """ return self @property def max(self): """Always equal to the point itself. This property exists to help with bounding box calculations. """ return self
[docs] def move(self, moving_vec): """Get a point that has been moved along a vector. Args: moving_vec: A Vector3D with the direction and distance to move the point. """ return Point3D(self.x + moving_vec.x, self.y + moving_vec.y, self.z + moving_vec.z)
[docs] def rotate(self, axis, angle, origin): """Rotate a point by a certain angle around an axis and origin. Right hand rule applies: If axis has a positive orientation, rotation will be clockwise. If axis has a negative orientation, rotation will be counterclockwise. Args: axis: A Vector3D axis representing the axis of rotation. angle: An angle for rotation in radians. origin: A Point3D for the origin around which the point will be rotated. """ return Vector3D._rotate(self - origin, axis, angle) + origin
[docs] def rotate_xy(self, angle, origin): """Get a point rotated counterclockwise in the XY plane by a certain angle. Args: angle: An angle in radians. origin: A Point3D for the origin around which the point will be rotated. """ trans_self = self - origin vec_2 = Vector2D._rotate(trans_self, angle) return Vector3D(vec_2.x, vec_2.y, trans_self.z) + origin
[docs] def reflect(self, normal, origin): """Get a point reflected across a plane with the input normal vector and origin. Args: normal: A Vector3D representing the normal vector for the plane across which the point will be reflected. THIS VECTOR MUST BE NORMALIZED. origin: A Point3D representing the origin from which to reflect. """ return Vector3D._reflect(self - origin, normal) + origin
[docs] def scale(self, factor, origin=None): """Scale a point by a factor from an origin point. Args: factor: A number representing how much the point should be scaled. origin: A Point3D representing the origin from which to scale. If None, it will be scaled from the World origin (0, 0, 0). """ if origin is None: return Point3D(self.x * factor, self.y * factor, self.z * factor) else: return (factor * (self - origin)) + origin
[docs] def project(self, normal, origin): """Get a point that is projected into a plane with a given normal and origin. Args: normal: A Vector3D representing the normal vector of the plane into which the plane will be projected. THIS VECTOR MUST BE NORMALIZED. origin: A Point3D representing the origin the plane into which the point will be projected. """ trans_self = self - origin return self - normal * trans_self.dot(normal)
[docs] def distance_to_point(self, point): """Get the distance from this point to another Point3D.""" vec = (self.x - point.x, self.y - point.y, self.z - point.z) return math.sqrt(vec[0] ** 2 + vec[1] ** 2 + vec[2] ** 2)
[docs] def to_dict(self): """Get Point3D as a dictionary.""" return {'type': 'Point3D', 'x': self.x, 'y': self.y, 'z': self.z}
def __add__(self, other): # Point + Vector -> Point # Point + Point -> Vector if isinstance(other, Point3D): return Vector3D(self.x + other.x, self.y + other.y, self.z + other.z) elif isinstance(other, Vector3D): return Point3D(self.x + other.x, self.y + other.y, self.z + other.z) else: raise TypeError('Cannot add Point3D and {}'.format(type(other))) def __sub__(self, other): # Point - Vector -> Point # Point - Point -> Vector if isinstance(other, Point3D): return Vector3D(self.x - other.x, self.y - other.y, self.z - other.z) elif isinstance(other, Vector3D): return Point3D(self.x - other.x, self.y - other.y, self.z - other.z) else: raise TypeError('Cannot subtract Point3D and {}'.format(type(other))) def __repr__(self): """Point3D representation.""" return 'Point3D (%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)