Source code for ladybug_geometry.geometry2d.pointvector

# coding=utf-8
"""2D Vector and 2D Point"""
from __future__ import division

import math
import operator


[docs] class Vector2D(object): """2D Vector object. Args: x: Number for the X coordinate. y: Number for the Y coordinate. Properties: * x * y * magnitude * magnitude_squared * is_zero """ __slots__ = ('_x', '_y') def __init__(self, x=0, y=0): """Initialize 2D Vector.""" self._x = self._cast_to_float(x) self._y = self._cast_to_float(y)
[docs] @classmethod def from_dict(cls, data): """Create a Vector2D/Point2D from a dictionary. Args: data: A python dictionary in the following format .. code-block:: python { "x": 10, "y": 0 } """ return cls(data['x'], data['y'])
[docs] @classmethod def from_array(cls, array): """Initialize a Vector2D/Point2D from an array. Args: array: A tuple or list with two numbers representing the x and y values of the point. """ return cls(array[0], array[1])
[docs] def to_array(self): """Get Vector2D/Point2D as a tuple of two numbers""" return (self.x, self.y)
@property def x(self): """Get the X coordinate.""" return self._x @property def y(self): """Get the Y coordinate.""" return self._y @property def magnitude(self): """Get the magnitude of the vector.""" return self.__abs__() @property def magnitude_squared(self): """Get the magnitude squared of the vector.""" return self.x ** 2 + self.y ** 2 @property def min(self): """Always equal to (0, 0). This property exists to help with bounding box calculations. """ return Point2D(0, 0) @property def max(self): """Always equal to (0, 0). This property exists to help with bounding box calculations. """ return Point2D(0, 0)
[docs] def is_zero(self, tolerance): """Boolean to note whether the vector is within a given zero tolerance. Args: tolerance: The tolerance below which the vector is considered to be a zero vector. """ return abs(self.x) <= tolerance and abs(self.y) <= tolerance
[docs] def is_equivalent(self, other, tolerance): """Test whether this object is equivalent to another within a certain tolerance. Note that if you want to test whether the coordinate values are perfectly equal to one another, the == operator can be used. Args: other: Another Point2D for which geometric equivalency will be tested. tolerance: The minimum difference between the coordinate values of two objects at which they can be considered geometrically equivalent. Returns: True if equivalent. False if not equivalent. """ return abs(self.x - other.x) <= tolerance and \ abs(self.y - other.y) <= tolerance
[docs] def normalize(self): """Get a copy of the vector that is a unit vector (magnitude=1).""" d = self.magnitude try: return Vector2D(self.x / d, self.y / d) except ZeroDivisionError: return self.duplicate()
[docs] def reverse(self): """Get a copy of this vector that is reversed.""" return self.__neg__()
[docs] def dot(self, other): """Get the dot product of this vector with another.""" return self.x * other.x + self.y * other.y
[docs] def determinant(self, other): """Get the determinant between this vector and another 2D vector.""" return self.x * other.y - self.y * other.x
[docs] def cross(self): """Get the cross product of this vector.""" return Vector2D(self.y, -self.x)
[docs] def angle(self, other): """Get the smallest angle between this vector and another.""" try: return math.acos(self.dot(other) / (self.magnitude * other.magnitude)) except ValueError: # python floating tolerance can cause math domain error if self.dot(other) < 0: return math.acos(-1) return math.acos(1)
[docs] def angle_counterclockwise(self, other): """Get the counterclockwise angle between this vector and another.""" inner = self.angle(other) det = self.determinant(other) if det >= 0: return inner # if the det > 0 then self is immediately clockwise of other else: return 2 * math.pi - inner # if the det < 0 then other is clockwise of self
[docs] def angle_clockwise(self, other): """Get the clockwise angle between this vector and another.""" inner = self.angle(other) det = self.determinant(other) if det <= 0: return inner # if the det > 0 then self is immediately clockwise of other else: return 2 * math.pi - inner # if the det < 0 then other is clockwise of self
[docs] def rotate(self, angle): """Get a vector that is rotated counterclockwise by a certain angle. Args: angle: An angle for rotation in radians. """ return Vector2D._rotate(self, angle)
[docs] def reflect(self, normal): """Get a vector that is reflected across a plane with the input normal vector. Args: normal: A Vector2D representing the normal vector for the plane across which the vector will be reflected. THIS VECTOR MUST BE NORMALIZED. """ return Vector2D._reflect(self, normal)
[docs] def duplicate(self): """Get a copy of this vector.""" return self.__copy__()
[docs] def to_dict(self): """Get Vector2D as a dictionary.""" return {'type': 'Vector2D', 'x': self.x, 'y': self.y}
[docs] @staticmethod def circular_mean(angles): """Compute the circular mean across a list of angles in radians. If no circular mean exists, the normal mean will be returned. Args: angles: A list of angles in radians. """ avg_x = sum(math.cos(ang) for ang in angles) / len(angles) avg_y = sum(math.sin(ang) for ang in angles) / len(angles) if (avg_x, avg_y) == (0, 0): # just return the normal mean return sum(angles) / len(angles) return math.atan2(avg_y, avg_x)
def _cast_to_float(self, value): """Ensure that an input coordinate value is a float.""" try: number = float(value) except Exception: raise TypeError( 'Coordinates must be numbers. Got {}: {}.'.format(type(value), value)) return number @staticmethod def _rotate(vec, angle): """Hidden rotation method used by both Point2D and Vector2D.""" cos_a = math.cos(angle) sin_a = math.sin(angle) qx = cos_a * vec.x - sin_a * vec.y qy = sin_a * vec.x + cos_a * vec.y return Vector2D(qx, qy) @staticmethod def _reflect(vec, normal): """Hidden reflection method used by both Point2D and Vector2D.""" d = 2 * (vec.x * normal.x + vec.y * normal.y) return Vector2D(vec.x - d * normal.x, vec.y - d * normal.y) def __copy__(self): return self.__class__(self.x, self.y) def __key(self): """A tuple based on the object properties, useful for hashing.""" return (self.x, self.y) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return isinstance(other, (Vector2D, Point2D)) and \ self.__key() == other.__key() def __ne__(self, other): return not self.__eq__(other) def __nonzero__(self): return self.x != 0 or self.y != 0 def __len__(self): return 2 def __getitem__(self, key): return (self.x, self.y)[key] def __iter__(self): return iter((self.x, self.y)) def __add__(self, other): # Vector + Point -> Point # Vector + Vector -> Vector if isinstance(other, Point2D): return Point2D(self.x + other.x, self.y + other.y) elif isinstance(other, Vector2D): return Vector2D(self.x + other.x, self.y + other.y) else: raise TypeError('Cannot add {} and {}'.format( self.__class__.__name__, type(other))) __radd__ = __add__ def __sub__(self, other): # Vector - Point -> Point # Vector - Vector -> Vector if isinstance(other, Point2D): return Point2D(self.x - other.x, self.y - other.y) elif isinstance(other, Vector2D): return Vector2D(self.x - other.x, self.y - other.y) else: raise TypeError('Cannot subtract {} and {}'.format( self.__class__.__name__, type(other))) def __rsub__(self, other): if isinstance(other, (Vector2D, Point2D)): return Vector2D(other.x - self.x, other.y - self.y) else: assert hasattr(other, '__len__') and len(other) == 2, \ 'Cannot subtract {} and {}'.format( self.__class__.__name__, type(other)) return Vector2D(other.x - self[0], other.y - self[1]) def __mul__(self, other): assert type(other) in (int, float), \ 'Cannot multiply types {} and {}'.format( self.__class__.__name__, type(other)) return Vector2D(self.x * other, self.y * other) __rmul__ = __mul__ def __div__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(self.x / other, self.y / other) def __rdiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(other / self.x, other / self.y) def __floordiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(operator.floordiv(self.x, other), operator.floordiv(self.y, other)) def __rfloordiv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(operator.floordiv(other, self.x), operator.floordiv(other, self.y)) def __truediv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(operator.truediv(self.x, other), operator.truediv(self.y, other)) def __rtruediv__(self, other): assert type(other) in (int, float), \ 'Cannot divide types {} and {}'.format(self.__class__.__name__, type(other)) return Vector2D(operator.truediv(other, self.x), operator.truediv(other, self.y)) def __neg__(self): return Vector2D(-self.x, -self.y) __pos__ = __copy__ def __abs__(self): return math.sqrt(self.x ** 2 + self.y ** 2)
[docs] def ToString(self): """Overwrite .NET ToString.""" return self.__repr__()
def __repr__(self): """Vector2D representation.""" return 'Vector2D (%.2f, %.2f)' % (self.x, self.y)
[docs] class Point2D(Vector2D): """2D Point object. Args: x: Number for the X coordinate. y: Number for the Y coordinate. Properties: * x * y """ __slots__ = () @property def min(self): """Always equal to the point itself. This property exists to help with bounding box calculations. """ return self @property def max(self): """Always equal to the point itself. This property exists to help with bounding box calculations. """ return self
[docs] def move(self, moving_vec): """Get a point that has been moved along a vector. Args: moving_vec: A Vector2D with the direction and distance to move the point. """ return Point2D(self.x + moving_vec.x, self.y + moving_vec.y)
[docs] def rotate(self, angle, origin): """Rotate a point counterclockwise by a certain angle around an origin. Args: angle: An angle for rotation in radians. origin: A Point2D for the origin around which the point will be rotated. """ return Vector2D._rotate(self - origin, angle) + origin
[docs] def reflect(self, normal, origin): """Get a point reflected across a plane with the input normal vector and origin. Args: normal: A Vector2D representing the normal vector for the plane across which the point will be reflected. THIS VECTOR MUST BE NORMALIZED. origin: A Point2D representing the origin from which to reflect. """ return Vector2D._reflect(self - origin, normal) + origin
[docs] def scale(self, factor, origin=None): """Scale a point by a factor from an origin point. Args: factor: A number representing how much the point should be scaled. origin: A Point2D representing the origin from which to scale. If None, it will be scaled from the World origin (0, 0). """ if origin is None: return Point2D(self.x * factor, self.y * factor) else: return (factor * (self - origin)) + origin
[docs] def distance_to_point(self, point): """Get the distance from this point to another Point2D.""" vec = (self.x - point.x, self.y - point.y) return math.sqrt(vec[0] ** 2 + vec[1] ** 2)
[docs] def to_dict(self): """Get Point2D as a dictionary.""" return {'type': 'Point2D', 'x': self.x, 'y': self.y}
def __add__(self, other): # Point + Vector -> Point # Point + Point -> Vector if isinstance(other, Point2D): return Vector2D(self.x + other.x, self.y + other.y) elif isinstance(other, Vector2D): return Point2D(self.x + other.x, self.y + other.y) else: raise TypeError('Cannot add Point2D and {}'.format(type(other))) def __sub__(self, other): # Point - Vector -> Point # Point - Point -> Vector if isinstance(other, Point2D): return Vector2D(self.x - other.x, self.y - other.y) elif isinstance(other, Vector2D): return Point2D(self.x - other.x, self.y - other.y) else: raise TypeError('Cannot subtract Point2D and {}'.format(type(other))) def __repr__(self): """Point2D representation.""" return 'Point2D (%.2f, %.2f)' % (self.x, self.y) def __lt__(self, other): """ Lesser then inequality method. This is used by certain external data structure libraries to efficiently store and retrieve point data. """ if isinstance(other, Vector2D): return self.x < other.x def __gt__(self, other): """ Greater then inequality method. This is used by certain external data structure libraries to efficiently store and retrieve point data. """ if isinstance(other, Vector2D): return self.x > other.x