Source code for ladybug_comfort.pmv

# coding=utf-8
"""Utility functions for calculating Predicted MEan Vote (PMV).

PMV is a thermal comfort model for use on the interior of buildings where a
heating or cooling system is operational. For naturally ventilated buildings,
the Adaptive thermal comfort model is recommended and, for outdoor conditions,
models such as Universal Thermal Climate Index (UTCI) or Physiological
Equivalent Temperature (PET) are recommended.
"""
from __future__ import division

from ladybug.rootfinding import secant
from ladybug.rootfinding import bisect

import math

FAILURE_MESSAGE = 'The following conditions caused a failure of PMV model ' \
    'convergence: Ta = {}; Tr = {}; Vel = {}; RH = {}; Met = {}; Clo= {}'


[docs] def predicted_mean_vote(ta, tr, vel, rh, met, clo, wme=0, still_air_threshold=0.1): """Calculate PMV using Fanger's original model and Pierce SET. This method uses the officially correct way to calculate PMV comfort according to the 2017 ASHRAE-55 Thermal Comfort Standard. This function will return valid values even if the air speed is above the sill air threshold of Fanger's original model (> 0.1 m/s). However, because this function always returns the Standard Effective Temperature (SET), it will run much more slowly for cases that are below the still air threshold (roughly 10 times as long). For cases where a SET output is not required, it is recommended that the predicted_mean_vote_no_set method be used. Note: [1] ASHRAE Standard 55 (2017). "Thermal Environmental Conditions for Human Occupancy". Atlanta Georgia: American Society of Heating, Refrigerating and Air Conditioning Engineers. [2] Hoyt Tyler, Schiavon Stefano, Piccioli Alberto, Cheung Toby, Moon Dustin, and Steinfeld Kyle, 2017, CBE Thermal Comfort Tool. Center for the Built Environment, University of California Berkeley, http://comfort.cbe.berkeley.edu/ [3] Doherty, T.J., and E.A. Arens. (1988). Evaluation of the physiological bases of thermal comfort models. ASHRAE Transactions, Vol. 94, Part 1, 15 pp. https://escholarship.org/uc/item/6pq3r5pr Args: ta: Air temperature [C] tr: Mean radiant temperature [C] vel: Relative air velocity [m/s] rh: Relative humidity [%] met: Metabolic rate [met] clo: Clothing [clo] wme: External work [met], normally around 0 when seated still_air_threshold: The air velocity in m/s at which the Pierce Standard Effective Temperature (SET) model will be used to correct values in the original Fanger PMV model. Default is 0.1 m/s per the 2015 release of ASHRAE Standard-55. Returns: A dictionary containing results of the PMV model with the following keys - pmv -- Predicted mean vote (PMV) - ppd -- Percent predicted dissatisfied (PPD) [%] - set -- Standard effective temperature (SET) [C] - ta_adj -- Air temperature adjusted for air speed [C] - ce -- Cooling effect. The difference between the air temperature and the adjusted air temperature [C] - heat_loss -- A dictionary with the 6 heat loss terms of the PMV model. The dictionary keys are as follows: - cond -- heat loss by conduction [W] - sweat -- heat loss by sweating [W] - res_l -- heat loss by latent respiration [W] - res_s -- heat loss by dry respiration [W] - rad -- heat loss by radiation [W] - conv -- heat loss by convection [W] """ se_temp = pierce_set(ta, tr, vel, rh, met, clo, wme) if vel <= still_air_threshold: # use the original Fanger model pmv, ppd, heat_loss = fanger_pmv(ta, tr, vel, rh, met, clo, wme) ta_adj, ce = ta, 0. else: # use the SET model to correct the cooling effect in Fanger model ce_l = 0. ce_r = 40. eps = 0.001 # precision of ce def fn(ce): return se_temp - pierce_set(ta - ce, tr - ce, still_air_threshold, rh, met, clo, wme) try: ce = secant(ce_l, ce_r, fn, eps) except OverflowError: ce = None if ce is None: # ce can be None because OverflowError or max secant iterations ce = bisect(ce_l, ce_r, fn, eps, 0) pmv, ppd, heat_loss = fanger_pmv( ta - ce, tr - ce, still_air_threshold, rh, met, clo, wme) ta_adj = ta - ce result = {} result['pmv'] = pmv result['ppd'] = ppd result['set'] = se_temp result['ta_adj'] = ta_adj result['ce'] = ce result['heat_loss'] = heat_loss return result
[docs] def predicted_mean_vote_no_set( ta, tr, vel, rh, met, clo, wme=0, still_air_threshold=0.1): """Calculate PMV using Fanger's model and Pierce SET model ONLY WHEN NECESSARY. This method uses the officially correct way to calculate PMV comfort according to the 2015 ASHRAE-55 Thermal Comfort Standard. This function will return correct values even if the air speed is above the sill air threshold of Fanger's original equation (> 0.1 m/s). However, because this function does not return the Standard Effective Temperature (SET), it will run much faster for cases that are below the still air threshold (roughly 1/10th the time). Args: ta: Air temperature [C] tr: Mean radiant temperature [C] vel: Relative air velocity [m/s] rh: Relative humidity [%] met: Metabolic rate [met] clo: Clothing [clo] wme: External work [met], normally around 0 when seated. still_air_threshold: The air velocity in m/s at which the Pierce Standard Effective Temperature (SET) model will be used to correct values in the original Fanger PMV model. Default is 0.1 m/s per the 2015 release of ASHRAE Standard-55. Returns: A dictionary containing results of the PMV model with the following keys - pmv -- Predicted mean vote (PMV) - ppd -- Percent predicted dissatisfied (PPD) [%] - ta_adj -- Air temperature adjusted for air speed [C] - ce -- Cooling effect. The difference between the air temperature and the adjusted air temperature [C] - heat_loss -- A dictionary with the 6 heat loss terms of the PMV model. The dictionary keys are as follows: - cond -- heat loss by conduction [W] - sweat -- heat loss by sweating [W] - res_l -- heat loss by latent respiration [W] - res_s -- heat loss by dry respiration [W] - rad -- heat loss by radiation [W] - conv -- heat loss by convection [W] """ if vel <= still_air_threshold: # use the original Fanger model pmv, ppd, heat_loss = fanger_pmv(ta, tr, vel, rh, met, clo, wme) ta_adj, ce = ta, 0. else: # use the SET model to correct the cooling effect in Fanger model ce_l = 0. ce_r = 40. eps = 0.001 # precision of ce se_temp = pierce_set(ta, tr, vel, rh, met, clo, wme) def fn(ce): return se_temp - pierce_set(ta - ce, tr - ce, still_air_threshold, rh, met, clo, wme) try: ce = secant(ce_l, ce_r, fn, eps) except OverflowError: ce = None if ce is None: # ce can be None because OverflowError or max secant iterations ce = bisect(ce_l, ce_r, fn, eps, 0) pmv, ppd, heat_loss = fanger_pmv( ta - ce, tr - ce, still_air_threshold, rh, met, clo, wme) ta_adj = ta - ce result = {} result['pmv'] = pmv result['ppd'] = ppd result['ta_adj'] = ta_adj result['ce'] = ce result['heat_loss'] = heat_loss return result
[docs] def fanger_pmv(ta, tr, vel, rh, met, clo, wme=0): """Calculate PMV using only Fanger's original equation. Note that Fanger's original experiments were conducted at low air speeds (<0.1 m/s) and the 2015 ASHRAE-55 thermal comfort standard states that one should use standard effective temperature (SET) to correct for the cooling effect of air speed in cases where such speeds exceed 0.1 m/s. The pmv() function in this module will apply this SET correction in cases where it is appropriate. Note: [1] Fanger, P.O. (1970). Thermal Comfort: Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press. Args: ta: Air temperature [C] tr: Mean radiant temperature [C] vel: Relative air velocity [m/s] rh: Relative humidity [%] met: Metabolic rate [met] clo: Clothing [clo] wme: External work [met], normally around 0 when seated Returns: A tuple with three elements - pmv: Predicted mean vote (PMV) - ppd: Percentage of people dissatisfied (PPD) [%] - heat_loss: A dictionary with the 6 heat loss terms of the PMV model. The dictionary items are as follows: - 'cond': heat loss by conduction [W] - 'sweat': heat loss by sweating [W] - 'res_l': heat loss by latent respiration [W] - 'res_s' heat loss by dry respiration [W] - 'rad': heat loss by radiation [W] - 'conv' heat loss by convection [W] """ pa = rh * 10. * math.exp(16.6536 - 4030.183 / (ta + 235.)) icl = 0.155 * clo # thermal insulation of the clothing in M2K/W m = met * 58.15 # metabolic rate in W/m2 w = wme * 58.15 # external work in W/m2 mw = m - w # internal heat production in the human body if icl <= 0.078: fcl = 1 + (1.29 * icl) else: fcl = 1.05 + (0.645 * icl) # heat transfer coefficient by forced convection hcf = 12.1 * math.sqrt(vel) taa = ta + 273. tra = tr + 273. tcla = taa + (35.5 - ta) / (3.5 * icl + 0.1) p1 = icl * fcl p2 = p1 * 3.96 p3 = p1 * 100. p4 = p1 * taa p5 = 308.7 - 0.028 * mw + (p2 * ((tra / 100.) ** 4)) xn = tcla / 100. xf = tcla / 50. eps = 0.00015 n = 0 while abs(xn - xf) > eps: xf = (xf + xn) / 2. hcn = 2.38 * (abs(100.0 * xf - taa) ** 0.25) if hcf > hcn: hc = hcf else: hc = hcn xn = (p5 + p4 * hc - p2 * (xf ** 4)) / (100. + p3 * hc) n += 1 if n > 150: print(FAILURE_MESSAGE.format(ta, tr, vel, rh, met, clo)) return 0.0, 5.0, \ {'cond': 0, 'sweat': 0, 'res_l': 0, 'res_s': 0, 'rad': 0, 'conv': 0} tcl = 100. * xn - 273. # heat loss conduction through skin hl1 = 3.05 * 0.001 * (5733. - (6.99 * mw) - pa) # heat loss by sweating if mw > 58.15: hl2 = 0.42 * (mw - 58.15) else: hl2 = 0 # latent respiration heat loss hl3 = 1.7 * 0.00001 * m * (5867. - pa) # dry respiration heat loss hl4 = 0.0014 * m * (34. - ta) # heat loss by radiation hl5 = 3.96 * fcl * (math.pow(xn, 4) - math.pow(tra / 100., 4)) # heat loss by convection hl6 = fcl * hc * (tcl - ta) ts = 0.303 * math.exp(-0.036 * m) + 0.028 pmv = ts * (mw - hl1 - hl2 - hl3 - hl4 - hl5 - hl6) ppd = ppd_from_pmv(pmv) # collect heat loss terms. heat_loss = { 'cond': hl1, 'sweat': hl2, 'res_l': hl3, 'res_s': hl4, 'rad': hl5, 'conv': hl6 } return pmv, ppd, heat_loss
[docs] def pierce_set(ta, tr, vel, rh, met, clo, wme=0.): """Calculate Standard Effective Temperature (SET). This function uses the J.B. Pierce two-node model of human thermoregulation. Note: [1] Nishi, Y; Gagge, A.P. (1977). "Effective temperature scale useful for hypo-and hyperbaric environments". Aviation, Space, and Environmental Medicine. 48 (2): 97–107. Args: ta: Air temperature [C] tr: Mean radiant temperature [C] vel: Relative air velocity [m/s] rh: Relative humidity [%] met: Metabolic rate [met] clo: Clothing [clo] wme: External work [met], normally around 0 when seated Returns: se_temp -- Standard effective temperature [C] """ # key initial variables vapor_pressure = (rh * saturated_vapor_pressure_torr(ta)) / 100. air_velocity = max(vel, 0.1) kclo = 0.25 bodyweight = 69.9 bodysurfacearea = 1.8258 metfactor = 58.2 sbc = 0.000000056697 # Stefan-Boltzmann constant (W/m2-K4) csw = 170. cdil = 120. cstr = 0.5 temp_skin_neutral = 33.7 # setpoint (neutral) value for Tsk temp_core_neutral = 36.8 # setpoint value for Tcr temp_body_neutral = 36.49 # setpoint for Tb skin_blood_flow_neutral = 6.3 # neutral value for skin_blood_flow # INITIAL VALUES - start of 1st experiment temp_skin = temp_skin_neutral temp_core = temp_core_neutral skin_blood_flow = skin_blood_flow_neutral mshiv = 0.0 alfa = 0.1 esk = 0.1 * met # Start new experiment here (for graded experiments) # UNIT CONVERSIONS (from input variables) p = 101.325 # pressure of the atmosphere in kPa pressure_in_atmospheres = p * 0.009869 ltime = 60 rcl = 0.155 * clo facl = 1.0 + 0.15 * clo # % INCreaSE IN BODY SURFACE Area DUE TO CLOTHING LR = 2.2 / pressure_in_atmospheres # Lewis Relation is 2.2 at sea level RM = met * metfactor M = met * metfactor if clo <= 0: wcrit = 0.38 * pow(air_velocity, -0.29) icl = 1.0 else: wcrit = 0.59 * pow(air_velocity, -0.08) icl = 0.45 chc = 3.0 * pow(pressure_in_atmospheres, 0.53) chcV = 8.600001 * pow((air_velocity * pressure_in_atmospheres), 0.53) chc = max(chc, chcV) # initial estimate of Tcl chr = 4.7 ctc = chr + chc ra = 1.0 / (facl * ctc) # resistance of air layer to dry heat transfer top = (chr * tr + chc * ta) / ctc tcl = top + (temp_skin - top) / (ctc * (ra + rcl)) # ======================== BEGIN ITERATION # # Tcl and chr are solved iteratively using: H(Tsk - To) = ctc(Tcl - To), # where H = 1 / (ra + Rcl) and ra = 1 / Facl * ctc tcl_old = False flag = True for i in range(ltime - 1): while abs(tcl - tcl_old) > 0.01: if flag: tcl_old = tcl chr = 4.0 * sbc * pow(((tcl + tr) / 2.0 + 273.15), 3.0) * 0.72 ctc = chr + chc ra = 1.0 / (facl * ctc) # resistance of air layer to dry heat transfer top = (chr * tr + chc * ta) / ctc tcl = (ra * temp_skin + rcl * top) / (ra + rcl) flag = True flag = False dry = (temp_skin - top) / (ra + rcl) hfcs = (temp_core - temp_skin) * (5.28 + 1.163 * skin_blood_flow) eres = 0.0023 * M * (44.0 - vapor_pressure) cres = 0.0014 * M * (34.0 - ta) scr = M - hfcs - eres - cres - wme ssk = hfcs - dry - esk tcsk = 0.97 * alfa * bodyweight tccr = 0.97 * (1 - alfa) * bodyweight dtsk = (ssk * bodysurfacearea) / (tcsk * 60.0) # deg C per minute dtcr = scr * bodysurfacearea / (tccr * 60.0) # deg C per minute temp_skin = temp_skin + dtsk temp_core = temp_core + dtcr TB = alfa * temp_skin + (1 - alfa) * temp_core sksig = temp_skin - temp_skin_neutral warms = (sksig > 0) * sksig colds = ((-1.0 * sksig) > 0) * (-1.0 * sksig) crsig = (temp_core - temp_core_neutral) warmc = (crsig > 0) * crsig coldc = ((-1.0 * crsig) > 0) * (-1.0 * crsig) bdsig = TB - temp_body_neutral warmb = (bdsig > 0) * bdsig skin_blood_flow = (skin_blood_flow_neutral + cdil * warmc) / (1 + cstr * colds) if skin_blood_flow > 90.0: skin_blood_flow = 90.0 if skin_blood_flow < 0.5: skin_blood_flow = 0.5 regsw = csw * warmb * math.exp(warms / 10.7) if regsw > 500.0: regsw = 500.0 ersw = 0.68 * regsw rea = 1.0 / (LR * facl * chc) # evaporative resistance of air layer recl = rcl / (LR * icl) # evaporative resistance of clothing (icl=.45) emax = (saturated_vapor_pressure_torr( temp_skin) - vapor_pressure) / (rea + recl) prsw = ersw / emax pwet = 0.06 + 0.94 * prsw edif = pwet * emax - ersw esk = ersw + edif if pwet > wcrit: pwet = wcrit prsw = wcrit / 0.94 ersw = prsw * emax edif = 0.06 * (1.0 - prsw) * emax esk = ersw + edif if emax < 0: edif = 0 ersw = 0 pwet = wcrit prsw = wcrit esk = emax esk = ersw + edif mshiv = 19.4 * colds * coldc M = RM + mshiv alfa = 0.0417737 + 0.7451833 / (skin_blood_flow + .585417) # Define new heat flow terms, coefficients, and abbreviations hsk = dry + esk # total heat loss from skin RN = M - wme # net metabolic heat production ecomf = 0.42 * (RN - (1 * metfactor)) if ecomf < 0.0: ecomf = 0.0 # from Fanger emax = emax * wcrit W = pwet pssk = saturated_vapor_pressure_torr(temp_skin) # Definition of ASHRAE standard environment... denoted "S" chrS = chr if met < 0.85: chcS = 3.0 else: chcS = 5.66 * pow((met - 0.85), 0.39) if chcS < 3.0: chcS = 3.0 ctcs = chcS + chrS rclos = 1.52 / ((met - wme / metfactor) + 0.6944) - 0.1835 rcls = 0.155 * rclos facls = 1.0 + kclo * rclos fcls = 1.0 / (1.0 + 0.155 * facls * ctcs * rclos) ims = 0.45 icls = ims * chcS / ctcs * (1 - fcls) / (chcS / ctcs - fcls * ims) ras = 1.0 / (facls * ctcs) reaS = 1.0 / (LR * facls * chcS) reclS = rcls / (LR * icls) hd_s = 1.0 / (ras + rcls) he_s = 1.0 / (reaS + reclS) # SET* (standardized humidity, clo, Pb, and chc) # determined using Newton's iterative solution # FNERRS is defined in the GENERAL SETUP section above delta = .0001 dx = 100.0 x_old = temp_skin - hsk / hd_s # lower bound for SET while abs(dx) > .01: be1 = pssk - 0.5 * saturated_vapor_pressure_torr(x_old) err1 = hsk - hd_s * (temp_skin - x_old) - W * he_s * be1 be2 = pssk - 0.5 * saturated_vapor_pressure_torr((x_old + delta)) err2 = hsk - hd_s * (temp_skin - (x_old + delta)) - W * he_s * be2 x = x_old - delta * err1 / (err2 - err1) dx = x - x_old x_old = x se_temp = x return se_temp
[docs] def saturated_vapor_pressure_torr(db_temp): """Calculate saturated vapor pressure (Torr) at temperature (C) This is used to synchronize the results of the Standard Effective temperature (SET) model with the results of the original Fanger model. """ return math.exp(18.6686 - 4030.183 / (db_temp + 235.0))
[docs] def ppd_from_pmv(pmv): """Calculate the Percentage of People Dissatisfied (PPD) from PMV. Args: pmv: The predicted mean vote (PMV) for which you want to know the PPD. Returns: ppd -- The percentage of people dissatisfied (PPD) for the input PMV. """ return 100.0 - 95.0 * math.exp(-0.03353 * pow(pmv, 4.0) - 0.2179 * pow(pmv, 2.0))
[docs] def pmv_from_ppd(ppd, pmv_up_bound=3, ppd_tolerance=0.001): """Calculate the two possible Predicted Mean Vote (PMV) values for a PPD value. Args: ppd: The percentage of people dissatisfied (PPD) for which you want to know the possible PMV. pmv_up_bound: The upper limit of PMV expected for the input PPD. Putting in a good estimate here will help the model converge on a solution faster. Defaut = 3 ppd_tolerance: The acceptable error in meeting the target PPD. Default = 0.001. Returns: A tuple with two elements - pmv_lower: The lower (cold) PMV value that will produce the input ppd. - pmv_upper: The upper (hot) PMV value that will produce the input ppd. """ assert ppd > 5 and ppd < 100, \ 'PPD value {}% is outside acceptable limits of the PMV model.'.format(ppd) def fn(pmv): return (100.0 - 95.0 * math.exp( -0.03353 * pow(pmv, 4.) - 0.2179 * pow(pmv, 2.0))) - ppd # Solve for the missing higher PMV value. pmv_upper = secant(0, pmv_up_bound, fn, ppd_tolerance) if pmv_upper is None: pmv_upper = bisect(0, pmv_up_bound, fn, ppd_tolerance, 0) pmv_lower = pmv_upper * -1 return pmv_lower, pmv_upper
[docs] def ppd_threshold_from_comfort_class(comf_class): """Get acceptable PPD comfort threshold given the EN-15251 comfort class. Args: comf_class: An integer representing the EN-15251 comfort class. Choose from: 1, 2, 3 (the higher the class, the greater the PPD threshold) Returns: ppd_thresh -- Acceptable PPD threshold. """ if comf_class == 1: ppd_thresh = 6 elif comf_class == 2: ppd_thresh = 10 elif comf_class == 3: ppd_thresh = 15 else: raise ValueError('Comfort class {} is not an acceptable value. ' 'Choose from: 1, 2, 3'.format(comf_class)) return ppd_thresh
[docs] def calc_missing_pmv_input(target_pmv, pmv_inputs, low_bound=0., up_bound=100., tolerance=0.001, still_air_threshold=0.1): """Return the value of a missing_pmv_input given a target_pmv and the 6 other inputs. This is particularly useful when trying to draw comfort polygons on charts using the PMV model. Args: target_pmv: The target PMV that you are trying to produce from the inputs to the PMV model. pmv_inputs: A dictionary of 7 pmv inputs with the following keys: 'ta', 'tr', 'vel', 'rh', 'met', 'clo', 'wme'. Each key should correspond to a value that represents that pmv input but one of these inputs should have a value of None. The input corresponding to None will be solved for by this function. One can also input None for both 'ta' and 'tr' to solve for the operative temperature that meets the target_pmv. In this case, both 'ta' and 'tr' in the output dictionary will be the same. Example (solving for relative humidity): .. code-block:: python { 'ta': 20, 'tr': 20, 'vel': 0.05, 'rh': None, 'met': 1.2, 'clo': 0.75, 'wme': 0 } low_bound: The lowest possible value of the missing input you are tying to find. Putting in a good value here will help the model converge to a solution faster. up_bound: The highest possible value of the missing input you are tying to find. Putting in a good value here will help the model converge to a solution faster. tolerance: The acceptable error in the target_pmv. The default is set to 0.001 still_air_threshold: The air velocity in m/s at which the Pierce Standard Effective Temperature (SET) model will be used to correct values in the original Fanger PMV model. Default is 0.1 m/s per the 2015 release of ASHRAE Standard-55. Returns: complete_pmv_inputs -- A copy of the pmv_inputs dictionary but with values for all inputs. The missing input to the PMV model will be filled by the value that returns the target_pmv. """ assert len(pmv_inputs.keys()) == 7, \ 'pmv_inputs must have 7 keys. Got {}.'.format(len(pmv_inputs.keys())) # Determine the function that should be used given the missing input. if pmv_inputs['ta'] is None and pmv_inputs['tr'] is None: def fn(x): return predicted_mean_vote_no_set( x, x, pmv_inputs['vel'], pmv_inputs['rh'], pmv_inputs['met'], pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = ('ta', 'tr') elif pmv_inputs['ta'] is None: def fn(x): return predicted_mean_vote_no_set( x, pmv_inputs['tr'], pmv_inputs['vel'], pmv_inputs['rh'], pmv_inputs['met'], pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = 'ta' elif pmv_inputs['tr'] is None: def fn(x): return predicted_mean_vote_no_set( pmv_inputs['ta'], x, pmv_inputs['vel'], pmv_inputs['rh'], pmv_inputs['met'], pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = 'tr' elif pmv_inputs['vel'] is None: def fn(x): return target_pmv - predicted_mean_vote_no_set( pmv_inputs['ta'], pmv_inputs['tr'], x, pmv_inputs['rh'], pmv_inputs['met'], pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] missing_key = 'vel' elif pmv_inputs['rh'] is None: def fn(x): return predicted_mean_vote_no_set( pmv_inputs['ta'], pmv_inputs['tr'], pmv_inputs['vel'], x, pmv_inputs['met'], pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = 'rh' elif pmv_inputs['met'] is None: def fn(x): return predicted_mean_vote_no_set( pmv_inputs['ta'], pmv_inputs['tr'], pmv_inputs['vel'], pmv_inputs['rh'], x, pmv_inputs['clo'], pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = 'met' elif pmv_inputs['clo'] is None: def fn(x): return predicted_mean_vote_no_set( pmv_inputs['ta'], pmv_inputs['tr'], pmv_inputs['vel'], pmv_inputs['rh'], pmv_inputs['met'], x, pmv_inputs['wme'], still_air_threshold)['pmv'] - target_pmv missing_key = 'clo' else: def fn(x): return predicted_mean_vote_no_set( pmv_inputs['ta'], pmv_inputs['tr'], pmv_inputs['vel'], pmv_inputs['rh'], pmv_inputs['met'], pmv_inputs['clo'], x, still_air_threshold)['pmv'] - target_pmv missing_key = 'wme' # Solve for the missing input using the function. missing_val = None if missing_key != 'clo': # bisect is much better at finding reasonable clo values missing_val = secant(low_bound, up_bound, fn, tolerance) if missing_val is None: missing_val = bisect(low_bound, up_bound, fn, tolerance, 0) # copy and complete the input dictionary pmv_inputs = pmv_inputs.copy() if isinstance(missing_key, str): pmv_inputs[missing_key] = missing_val else: for key in missing_key: pmv_inputs[key] = missing_val return pmv_inputs