honeybee_vtk.vtkjs.schema module¶
Schema for VTKJS objects.
-
class
honeybee_vtk.vtkjs.schema.
Camera
(*, focalPoint: types.ConstrainedListValue[float] = [2.5, 5, 1.5], position: types.ConstrainedListValue[float] = [19.3843, - 6.75305, 10.2683], viewUp: types.ConstrainedListValue[float] = [- 0.303079, 0.250543, 0.919441])[source]¶ Bases:
pydantic.main.BaseModel
Camera in vtkjs viewer.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
focalPoint
: List[float]¶
-
position
: List[float]¶
-
viewUp
: List[float]¶
-
-
class
honeybee_vtk.vtkjs.schema.
DataSet
(*, name: str, type: str = 'httpDataSetReader', httpDataSetReader: honeybee_vtk.vtkjs.schema.DataSetResource, actor: honeybee_vtk.vtkjs.schema.DataSetActor = DataSetActor(origin=[0, 0, 0], scale=[1, 1, 1], position=[0, 0, 0]), actorRotation: types.ConstrainedListValue[float] = [0, 0, 0, 1], mapper: honeybee_vtk.vtkjs.schema.DataSetMapper = DataSetMapper(colorByArrayName='', colorMode=0, scalarMode=4), property: honeybee_vtk.vtkjs.schema.DataSetProperty = DataSetProperty(representation=2, edgeVisibility=0, diffuseColor=[0.8, 0.8, 0.8], pointSize=5, opacity=1), legends: List[dict] = [])[source]¶ Bases:
pydantic.main.BaseModel
A VTKJS dataset.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
actorRotation
: List[float]¶
-
httpDataSetReader
: honeybee_vtk.vtkjs.schema.DataSetResource¶
-
name
: str¶
-
type
: str¶
-
-
class
honeybee_vtk.vtkjs.schema.
DataSetActor
(*, origin: List[float] = [0, 0, 0], scale: List[float] = [1, 1, 1], position: List[float] = [0, 0, 0])[source]¶ Bases:
pydantic.main.BaseModel
A Dataset actor.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
origin
: List[float]¶
-
position
: List[float]¶
-
scale
: List[float]¶
-
-
class
honeybee_vtk.vtkjs.schema.
DataSetMapper
(*, colorByArrayName: str = '', colorMode: int = 0, scalarMode: int = 4)[source]¶ Bases:
pydantic.main.BaseModel
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
colorByArrayName
: str¶
-
colorMode
: int¶
-
scalarMode
: int¶
-
-
class
honeybee_vtk.vtkjs.schema.
DataSetProperty
(*, representation: int = 2, edgeVisibility: int = 0, diffuseColor: types.ConstrainedListValue[float] = [0.8, 0.8, 0.8], pointSize: int = 5, opacity: float = 1)[source]¶ Bases:
pydantic.main.BaseModel
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
diffuseColor
: List[float]¶
-
edgeVisibility
: int¶
-
opacity
: float¶
-
pointSize
: int¶
-
representation
: int¶
-
-
class
honeybee_vtk.vtkjs.schema.
DataSetResource
(*, url: str)[source]¶ Bases:
pydantic.main.BaseModel
Path to a data resource.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
url
: str¶
-
-
class
honeybee_vtk.vtkjs.schema.
DisplayMode
(value)[source]¶ Bases:
enum.Enum
Display mode.
-
Points
= 0¶
-
Shaded
= 2¶
-
Surface
= 2¶
-
SurfaceWithEdges
= 3¶
-
Wireframe
= 1¶
-
-
class
honeybee_vtk.vtkjs.schema.
IndexJSON
(*, background: types.ConstrainedListValue[float] = [1, 1, 1], camera: honeybee_vtk.vtkjs.schema.Camera = Camera(focalPoint=[2.5, 5, 1.5], position=[19.3843, - 6.75305, 10.2683], viewUp=[- 0.303079, 0.250543, 0.919441]), centerOfRotation: types.ConstrainedListValue[float] = [2.5, 5, 1.5], scene: List[honeybee_vtk.vtkjs.schema.DataSet] = None, lookupTables: Dict = None, version: int = 1)[source]¶ Bases:
pydantic.main.BaseModel
VTKJS index class.
These information will be translated to an index.json file.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
background
: List[float]¶
-
centerOfRotation
: List[float]¶
-
lookupTables
: Dict¶
-
scene
: List[honeybee_vtk.vtkjs.schema.DataSet]¶
-