honeybee_vtk.config module

Data json schema and validation for the config file.

class honeybee_vtk.config.Autocalculate(*, type: honeybee_vtk.config.ConstrainedStrValue = 'Autocalculate')[source]

Bases: pydantic.main.BaseModel

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
type: honeybee_vtk.config.ConstrainedStrValue
class honeybee_vtk.config.Config(*, data: List[honeybee_vtk.config.DataConfig])[source]

Bases: pydantic.main.BaseModel

Config for simulation results you’d like to load on a honeybee-vtk model.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
data: List[honeybee_vtk.config.DataConfig]
class honeybee_vtk.config.DataConfig(*, identifier: str, object_type: honeybee_vtk.types.DataSetNames, unit: str, path: str, hide: bool = False, lower_threshold: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), upper_threshold: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), legend_parameters: honeybee_vtk.config.LegendConfig = LegendConfig(color_set=<ColorSets.ecotect: 'ecotect'>, reverse_color_set=False, min=Autocalculate(type='Autocalculate'), max=Autocalculate(type='Autocalculate'), hide_legend=False, orientation=<Orientation.vertical: 'vertical'>, width=0.05, height=0.45, position=[0.9, 0.5], color_count=Autocalculate(type='Autocalculate'), label_count=Autocalculate(type='Autocalculate'), decimal_count=<DecimalCount.default: 'default'>, preceding_labels=False, label_parameters=TextConfig(color=[0, 0, 0], size=0, bold=False), title_parameters=TextConfig(color=[0, 0, 0], size=0, bold=True)), grid_colors: List = None)[source]

Bases: pydantic.main.BaseModel

data-config for simulation results you’d like to load on a honeybee-vtk model.

Config

alias of pydantic.config.BaseConfig

classmethod check_pos_against_width_height(v: honeybee_vtk.config.LegendConfig, values)honeybee_vtk.config.LegendConfig[source]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod set_default_value(v)[source]
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
grid_colors: List
hide: bool
identifier: str
legend_parameters: honeybee_vtk.config.LegendConfig
lower_threshold: Union[honeybee_vtk.config.Autocalculate, float]
object_type: honeybee_vtk.types.DataSetNames
path: str
unit: str
upper_threshold: Union[honeybee_vtk.config.Autocalculate, float]
class honeybee_vtk.config.DateTimeConfig(*, month: honeybee_vtk.config.ConstrainedIntValue, day: honeybee_vtk.config.ConstrainedIntValue, hour: honeybee_vtk.config.ConstrainedIntValue)[source]

Bases: pydantic.main.BaseModel

A DateTime object.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
day: honeybee_vtk.config.ConstrainedIntValue
hour: honeybee_vtk.config.ConstrainedIntValue
month: honeybee_vtk.config.ConstrainedIntValue
class honeybee_vtk.config.InputFile(*, paths: List[str], identifiers: List[str], units: List[str])[source]

Bases: pydantic.main.BaseModel

Config for the input file to be consumed by the config command.

Config

alias of pydantic.config.BaseConfig

classmethod check_length(v, values)[source]

Check that the length of identifiers and units match the length of paths.

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
identifiers: List[str]
paths: List[str]
units: List[str]
class honeybee_vtk.config.LegendConfig(*, color_set: honeybee_vtk.legend_parameter.ColorSets = <ColorSets.ecotect: 'ecotect'>, reverse_color_set: bool = False, min: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), max: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), hide_legend: bool = False, orientation: honeybee_vtk.legend_parameter.Orientation = <Orientation.vertical: 'vertical'>, width: honeybee_vtk.config.ConstrainedFloatValue = 0.05, height: honeybee_vtk.config.ConstrainedFloatValue = 0.45, position: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedFloatValue] = [0.9, 0.5], color_count: Union[honeybee_vtk.config.Autocalculate, int] = Autocalculate(type='Autocalculate'), label_count: Union[honeybee_vtk.config.Autocalculate, int] = Autocalculate(type='Autocalculate'), decimal_count: honeybee_vtk.legend_parameter.DecimalCount = <DecimalCount.default: 'default'>, preceding_labels: bool = False, label_parameters: honeybee_vtk.config.TextConfig = TextConfig(color=[0, 0, 0], size=0, bold=False), title_parameters: honeybee_vtk.config.TextConfig = TextConfig(color=[0, 0, 0], size=0, bold=True))[source]

Bases: pydantic.main.BaseModel

Config for the legend to be created from a dataset.

class Config[source]

Bases: object

validate_all = True
validate_assignment = True
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
color_count: Union[honeybee_vtk.config.Autocalculate, int]
color_set: honeybee_vtk.legend_parameter.ColorSets
decimal_count: honeybee_vtk.legend_parameter.DecimalCount
height: honeybee_vtk.config.ConstrainedFloatValue
hide_legend: bool
label_count: Union[honeybee_vtk.config.Autocalculate, int]
label_parameters: honeybee_vtk.config.TextConfig
max: Union[honeybee_vtk.config.Autocalculate, float]
min: Union[honeybee_vtk.config.Autocalculate, float]
orientation: honeybee_vtk.legend_parameter.Orientation
position: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedFloatValue]
preceding_labels: bool
reverse_color_set: bool
title_parameters: honeybee_vtk.config.TextConfig
width: honeybee_vtk.config.ConstrainedFloatValue
class honeybee_vtk.config.Period(*, date_time: types.ConstrainedListValue[honeybee_vtk.config.DateTimeConfig], color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue] = [0, 0, 0])[source]

Bases: pydantic.main.BaseModel

A period of time for which to generate time step images.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue]
date_time: types.ConstrainedListValue[honeybee_vtk.config.DateTimeConfig]
class honeybee_vtk.config.Periods(*, periods: List[honeybee_vtk.config.Period])[source]

Bases: pydantic.main.BaseModel

Config for the peridos to be used in generating time step images.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
periods: List[honeybee_vtk.config.Period]
class honeybee_vtk.config.TextConfig(*, color: List[honeybee_vtk.config.ConstrainedIntValue] = [0, 0, 0], size: honeybee_vtk.config.ConstrainedIntValue = 0, bold: bool = False)[source]

Bases: pydantic.main.BaseModel

Config for the text to be used in a legend.

This object applies to text for legend title and legend labels as well.

class Config[source]

Bases: object

validate_all = True
validate_assignment = True
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
bold: bool
color: List[honeybee_vtk.config.ConstrainedIntValue]
size: honeybee_vtk.config.ConstrainedIntValue
class honeybee_vtk.config.TimeStepConfig(*, index: int, hoy: float, color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue])[source]

Bases: pydantic.main.BaseModel

Data to be used in generating an image for the time step.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue]
hoy: float
index: int
class honeybee_vtk.config.TimeStepDataConfig(*, time_step_data: List[honeybee_vtk.config.TimeStepConfig])[source]

Bases: pydantic.main.BaseModel

A list of TimeStepData objects.

Config

alias of pydantic.config.BaseConfig

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) → Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod parse_obj(obj: Any) → Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode
classmethod update_forward_refs(**localns: Any) → None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) → Model
time_step_data: List[honeybee_vtk.config.TimeStepConfig]