honeybee_vtk.config module¶
Data json schema and validation for the config file.
-
class
honeybee_vtk.config.
Autocalculate
(*, type: honeybee_vtk.config.ConstrainedStrValue = 'Autocalculate')[source]¶ Bases:
pydantic.main.BaseModel
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
type
: honeybee_vtk.config.ConstrainedStrValue¶
-
-
class
honeybee_vtk.config.
Config
(*, data: List[honeybee_vtk.config.DataConfig])[source]¶ Bases:
pydantic.main.BaseModel
Config for simulation results you’d like to load on a honeybee-vtk model.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
data
: List[honeybee_vtk.config.DataConfig]¶
-
-
class
honeybee_vtk.config.
DataConfig
(*, identifier: str, object_type: honeybee_vtk.types.DataSetNames, unit: str, path: str, hide: bool = False, lower_threshold: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), upper_threshold: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), legend_parameters: honeybee_vtk.config.LegendConfig = LegendConfig(color_set=<ColorSets.ecotect: 'ecotect'>, reverse_color_set=False, min=Autocalculate(type='Autocalculate'), max=Autocalculate(type='Autocalculate'), hide_legend=False, orientation=<Orientation.vertical: 'vertical'>, width=0.05, height=0.45, position=[0.9, 0.5], color_count=Autocalculate(type='Autocalculate'), label_count=Autocalculate(type='Autocalculate'), decimal_count=<DecimalCount.default: 'default'>, preceding_labels=False, label_parameters=TextConfig(color=[0, 0, 0], size=0, bold=False), title_parameters=TextConfig(color=[0, 0, 0], size=0, bold=True)), grid_colors: List = None)[source]¶ Bases:
pydantic.main.BaseModel
data-config for simulation results you’d like to load on a honeybee-vtk model.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
check_pos_against_width_height
(v: honeybee_vtk.config.LegendConfig, values) → honeybee_vtk.config.LegendConfig[source]¶
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
grid_colors
: List¶
-
hide
: bool¶
-
identifier
: str¶
-
legend_parameters
: honeybee_vtk.config.LegendConfig¶
-
lower_threshold
: Union[honeybee_vtk.config.Autocalculate, float]¶
-
object_type
: honeybee_vtk.types.DataSetNames¶
-
path
: str¶
-
unit
: str¶
-
upper_threshold
: Union[honeybee_vtk.config.Autocalculate, float]¶
-
-
class
honeybee_vtk.config.
DateTimeConfig
(*, month: honeybee_vtk.config.ConstrainedIntValue, day: honeybee_vtk.config.ConstrainedIntValue, hour: honeybee_vtk.config.ConstrainedIntValue)[source]¶ Bases:
pydantic.main.BaseModel
A DateTime object.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
day
: honeybee_vtk.config.ConstrainedIntValue¶
-
hour
: honeybee_vtk.config.ConstrainedIntValue¶
-
month
: honeybee_vtk.config.ConstrainedIntValue¶
-
-
class
honeybee_vtk.config.
InputFile
(*, paths: List[str], identifiers: List[str], units: List[str])[source]¶ Bases:
pydantic.main.BaseModel
Config for the input file to be consumed by the config command.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
check_length
(v, values)[source]¶ Check that the length of identifiers and units match the length of paths.
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
identifiers
: List[str]¶
-
paths
: List[str]¶
-
units
: List[str]¶
-
-
class
honeybee_vtk.config.
LegendConfig
(*, color_set: honeybee_vtk.legend_parameter.ColorSets = <ColorSets.ecotect: 'ecotect'>, reverse_color_set: bool = False, min: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), max: Union[honeybee_vtk.config.Autocalculate, float] = Autocalculate(type='Autocalculate'), hide_legend: bool = False, orientation: honeybee_vtk.legend_parameter.Orientation = <Orientation.vertical: 'vertical'>, width: honeybee_vtk.config.ConstrainedFloatValue = 0.05, height: honeybee_vtk.config.ConstrainedFloatValue = 0.45, position: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedFloatValue] = [0.9, 0.5], color_count: Union[honeybee_vtk.config.Autocalculate, int] = Autocalculate(type='Autocalculate'), label_count: Union[honeybee_vtk.config.Autocalculate, int] = Autocalculate(type='Autocalculate'), decimal_count: honeybee_vtk.legend_parameter.DecimalCount = <DecimalCount.default: 'default'>, preceding_labels: bool = False, label_parameters: honeybee_vtk.config.TextConfig = TextConfig(color=[0, 0, 0], size=0, bold=False), title_parameters: honeybee_vtk.config.TextConfig = TextConfig(color=[0, 0, 0], size=0, bold=True))[source]¶ Bases:
pydantic.main.BaseModel
Config for the legend to be created from a dataset.
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
color_count
: Union[honeybee_vtk.config.Autocalculate, int]¶
-
color_set
: honeybee_vtk.legend_parameter.ColorSets¶
-
decimal_count
: honeybee_vtk.legend_parameter.DecimalCount¶
-
height
: honeybee_vtk.config.ConstrainedFloatValue¶
-
hide_legend
: bool¶
-
label_count
: Union[honeybee_vtk.config.Autocalculate, int]¶
-
label_parameters
: honeybee_vtk.config.TextConfig¶
-
max
: Union[honeybee_vtk.config.Autocalculate, float]¶
-
min
: Union[honeybee_vtk.config.Autocalculate, float]¶
-
orientation
: honeybee_vtk.legend_parameter.Orientation¶
-
position
: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedFloatValue]¶
-
preceding_labels
: bool¶
-
reverse_color_set
: bool¶
-
title_parameters
: honeybee_vtk.config.TextConfig¶
-
width
: honeybee_vtk.config.ConstrainedFloatValue¶
-
classmethod
-
class
honeybee_vtk.config.
Period
(*, date_time: types.ConstrainedListValue[honeybee_vtk.config.DateTimeConfig], color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue] = [0, 0, 0])[source]¶ Bases:
pydantic.main.BaseModel
A period of time for which to generate time step images.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
color
: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue]¶
-
date_time
: types.ConstrainedListValue[honeybee_vtk.config.DateTimeConfig]¶
-
-
class
honeybee_vtk.config.
Periods
(*, periods: List[honeybee_vtk.config.Period])[source]¶ Bases:
pydantic.main.BaseModel
Config for the peridos to be used in generating time step images.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
periods
: List[honeybee_vtk.config.Period]¶
-
-
class
honeybee_vtk.config.
TextConfig
(*, color: List[honeybee_vtk.config.ConstrainedIntValue] = [0, 0, 0], size: honeybee_vtk.config.ConstrainedIntValue = 0, bold: bool = False)[source]¶ Bases:
pydantic.main.BaseModel
Config for the text to be used in a legend.
This object applies to text for legend title and legend labels as well.
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
bold
: bool¶
-
color
: List[honeybee_vtk.config.ConstrainedIntValue]¶
-
size
: honeybee_vtk.config.ConstrainedIntValue¶
-
classmethod
-
class
honeybee_vtk.config.
TimeStepConfig
(*, index: int, hoy: float, color: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue])[source]¶ Bases:
pydantic.main.BaseModel
Data to be used in generating an image for the time step.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
color
: types.ConstrainedListValue[honeybee_vtk.config.ConstrainedIntValue]¶
-
hoy
: float¶
-
index
: int¶
-
-
class
honeybee_vtk.config.
TimeStepDataConfig
(*, time_step_data: List[honeybee_vtk.config.TimeStepConfig])[source]¶ Bases:
pydantic.main.BaseModel
A list of TimeStepData objects.
-
Config
¶ alias of
pydantic.config.BaseConfig
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
-
copy
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
time_step_data
: List[honeybee_vtk.config.TimeStepConfig]¶
-