Source code for honeybee_radiance_postprocess.results.annual_irradiance

import json
from pathlib import Path
import numpy as np

from ladybug.datatype.energyflux import EnergyFlux

from ..metrics import (average_values_array2d, cumulative_values_array2d,
    peak_values_array2d)
from ..util import filter_array, hoys_mask
from ..annualirradiance import _annual_irradiance_vis_metadata
from .. import type_hints
from ..dynamic import DynamicSchedule
from .results import Results


[docs] class AnnualIrradiance(Results): """Annual Daylight Results class. Args: folder: Path to results folder. schedule: 8760 values as a list. Values must be either 0 or 1. Values of 1 indicates occupied hours. If no schedule is provided a default schedule will be used. (Default: None). load_arrays: Set to True to load all NumPy arrays. If False the arrays will be loaded only once they are needed. In both cases the loaded array(s) will be stored in a dictionary under the arrays property. (Default: False). Properties: * schedule * occ_pattern * total_occ * sun_down_occ_hours * occ_mask * arrays * valid_states * datatype """ def __init__(self, folder, schedule: list = None, load_arrays: bool = False): """Initialize Results.""" Results.__init__(self, folder, datatype=EnergyFlux('Irradiance'), schedule=schedule, unit='W/m2', load_arrays=load_arrays)
[docs] def cumulative_values( self, hoys: list = [], states: DynamicSchedule = None, t_step_multiplier: float = 1000, grids_filter: str = '*', res_type: str = 'total') -> type_hints.cumulative_values: """Get cumulative values for each sensor over a given period. The hoys input can be used to filter the data for a particular time period. Args: hoys: An optional numbers or list of numbers to select the hours of the year (HOYs) for which results will be computed. Defaults to []. states: A dictionary of states. Defaults to None. t_step_multiplier: A value that will be multiplied with the timestep. grids_filter: The name of a grid or a pattern to filter the grids. Defaults to '*'. res_type: Type of results to load. Defaults to 'total'. Returns: Tuple: A tuple with the cumulative value for each sensor and grid information. """ cumulative_values, grids_info = \ super(AnnualIrradiance, self).cumulative_values( hoys=hoys, states=states, t_step_multiplier=t_step_multiplier, grids_filter=grids_filter, res_type=res_type ) return cumulative_values, grids_info
[docs] def cumulative_values_to_folder( self, target_folder: str, hoys: list = [], states: DynamicSchedule = None, t_step_multiplier: float = 1000, grids_filter: str = '*', res_type: str = 'total'): """Get cumulative values for each sensor over a given period and write the values to a folder. Args: target_folder: Folder path to write annual metrics in. Usually this folder is called 'metrics'. hoys: An optional numbers or list of numbers to select the hours of the year (HOYs) for which results will be computed. Defaults to []. states: A dictionary of states. Defaults to None. t_step_multiplier: A value that will be multiplied with the timestep. grids_filter: The name of a grid or a pattern to filter the grids. Defaults to '*'. res_type: Type of results to load. Defaults to 'total'. """ super(AnnualIrradiance, self).cumulative_values_to_folder( target_folder, hoys=hoys, states=states, t_step_multiplier=t_step_multiplier, grids_filter=grids_filter, res_type=res_type )
[docs] def annual_metrics( self, hoys: list = [], states: DynamicSchedule = None, grids_filter: str = '*') -> type_hints.annual_irradiance_metrics: """Calculate multiple annual irradiance metrics. This method will calculate the following metrics: * Average Irradiance (W/m2) * Peak Irradiance (W/m2) * Cumulative Radiation (kWh/m2) Args: hoys: An optional numbers or list of numbers to select the hours of the year (HOYs) for which results will be computed. Defaults to []. states: A dictionary of states. Defaults to None. grids_filter: The name of a grid or a pattern to filter the grids. Defaults to '*'. Returns: Tuple: A tuple with the three annual irradiance metrics and grid information. """ grids_info = self._filter_grids(grids_filter=grids_filter) mask = hoys_mask(self.sun_up_hours, hoys) full_length = len(self.study_hours) average = [] peak = [] cumulative = [] for grid_info in grids_info: array = self._array_from_states(grid_info, states=states, res_type='total') if np.any(array): array_filter = np.apply_along_axis( filter_array, 1, array, mask=mask) average_results = average_values_array2d( array_filter, full_length=full_length) peak_results, max_i = peak_values_array2d( array_filter) cumulative_results = cumulative_values_array2d( array_filter, self.timestep, 1000) else: average_results = peak_results = cumulative_results = \ np.zeros(grid_info['count']) average.append(average_results) peak.append(peak_results) cumulative.append(cumulative_results) return average, peak, cumulative, grids_info
[docs] def annual_metrics_to_folder( self, target_folder: str, hoys: list = [], states: DynamicSchedule = None, grids_filter: str = '*'): """Calculate and write multiple annual irradiance metrics to a folder. This command generates 3 files for each input grid. * average_irradiance/{grid-name}.res -- Average Irradiance (W/m2) * peak_irradiance/{grid-name}.res -- Peak Irradiance (W/m2) * cumulative_radiation/{grid-name}.res -- Cumulative Radiation (kWh/m2) Args: target_folder: Folder path to write annual metrics in. Usually this folder is called 'metrics'. hoys: An optional numbers or list of numbers to select the hours of the year (HOYs) for which results will be computed. Defaults to []. states: A dictionary of states. Defaults to None. grids_filter: The name of a grid or a pattern to filter the grids. Defaults to '*'. """ folder = Path(target_folder) folder.mkdir(parents=True, exist_ok=True) average, peak, cumulative, grids_info = self.annual_metrics( hoys=hoys, states=states, grids_filter=grids_filter) pattern = { 'average_irradiance': average, 'peak_irradiance': peak, 'cumulative_radiation': cumulative, } for metric, data in pattern.items(): metric_folder = folder.joinpath(metric) for count, grid_info in enumerate(grids_info): d = data[count] full_id = grid_info['full_id'] output_file = metric_folder.joinpath(f'{full_id}.res') output_file.parent.mkdir(parents=True, exist_ok=True) np.savetxt(output_file, d, fmt='%.2f') for metric in pattern.keys(): info_file = folder.joinpath(metric, 'grids_info.json') info_file.write_text(json.dumps(grids_info)) metric_info_dict = _annual_irradiance_vis_metadata() for metric, data in metric_info_dict.items(): vis_metadata_file = folder.joinpath(metric, 'vis_metadata.json') vis_metadata_file.write_text(json.dumps(data, indent=4))