"""Functions for LEED post-processing."""
from typing import Tuple, Union
from pathlib import Path
from collections import defaultdict
import json
import itertools
import numpy as np
from ladybug.analysisperiod import AnalysisPeriod
from ladybug.datatype.generic import GenericType
from ladybug.color import Colorset
from ladybug.datacollection import HourlyContinuousCollection
from ladybug.datatype.fraction import Fraction
from ladybug.datatype.time import Time
from ladybug.legend import LegendParameters
from ladybug.header import Header
from honeybee.model import Model
from honeybee.units import conversion_factor_to_meters
from honeybee_radiance.writer import _filter_by_pattern
from honeybee_radiance.postprocess.annual import filter_schedule_by_hours
from ..metrics import da_array2d, ase_array2d
from ..annual import schedule_to_hoys, occupancy_schedule_8_to_6
from ..results.annual_daylight import AnnualDaylight
from ..util import filter_array, recursive_dict_merge
from ..dynamic import DynamicSchedule, ApertureGroupSchedule
from .leed_schedule import shd_trans_schedule_descending, states_schedule_descending
def _create_grid_summary(
grid_info, sda_grid, sda_blinds_up_grid, sda_blinds_down_grid, ase_grid,
pass_sda, pass_ase, total_floor, area_weighted=True):
"""Create a LEED summary for a single grid.
Args:
grid_info: Grid information.
sda_grid: Spatial Daylight Autonomy.
ase_grid: Annual Sunlight Exposure.
pass_sda: The percentage of the sensor points or floor area that
passes sDA.
pass_ase: The percentage of the sensor points or floor area that
passes ASE.
total_floor: The number of sensor points or floor area.
area_weighted: Boolean to determine if the results are area
weighted. Defaults to True.
Returns:
Tuple:
- summary_grid: Summary of each grid individually.
"""
grid_id = grid_info['full_id']
grid_name = grid_info['name']
grid_summary = {
grid_id: {}
}
if ase_grid > 10:
ase_note = (
'The Annual Sunlight Exposure is greater than 10% for space: '
f'{grid_name}. Identify in writing how the space is designed to '
'address glare.'
)
grid_summary[grid_id]['ase_note'] = ase_note
if area_weighted:
_grid_summary = {
grid_id: {
'name': grid_name,
'full_id': grid_id,
'ase': round(ase_grid, 2),
'sda': round(sda_grid, 2),
'sda_blinds_up': round(sda_blinds_up_grid, 2),
'sda_blinds_down': round(sda_blinds_down_grid, 2),
'floor_area_passing_ase': round(pass_ase, 2),
'floor_area_passing_sda': round(pass_sda, 2),
'total_floor_area': round(total_floor, 2)
}
}
else:
_grid_summary = {
grid_id: {
'name': grid_name,
'full_id': grid_id,
'ase': round(ase_grid, 2),
'sda': round(sda_grid, 2),
'sda_blinds_up': round(sda_blinds_up_grid, 2),
'sda_blinds_down': round(sda_blinds_down_grid, 2),
'sensor_count_passing_ase': int(round(pass_ase, 2)),
'sensor_count_passing_sda': int(round(pass_sda, 2)),
'total_sensor_count': total_floor
}
}
recursive_dict_merge(grid_summary, _grid_summary)
return grid_summary
def _leed_summary(
pass_ase_grids: list, pass_sda_grids: list, grids_info: list,
grid_areas: list, pass_sda_blinds_up_grids: list,
pass_sda_blinds_down_grids: list) -> Tuple[dict, dict]:
"""Create combined summary and summary for each grid individually.
Args:
pass_ase_grids: A list where each sublist is a list of True/False that
tells if each sensor point passes ASE.
pass_sda_grids: A list where each sublist is a list of True/False that
tells if each sensor point passes sDA.
grids_info: A list of grid information.
grid_areas: A list where each sublist is the area of each sensor point.
The alternative is a list of None values for each grid information.
Returns:
Tuple:
- summary: Summary of of all grids combined.
- summary_grid: Summary of each grid individually.
"""
summary = {}
summary_grid = {}
if all(grid_area is not None for grid_area in grid_areas):
# weighted by mesh face area
total_area = 0
total_area_pass_ase = 0
total_area_pass_sda = 0
for (pass_ase, pass_sda, grid_area, grid_info, pass_sda_blinds_up,
pass_sda_blinds_down) in \
zip(pass_ase_grids, pass_sda_grids, grid_areas, grids_info,
pass_sda_blinds_up_grids, pass_sda_blinds_down_grids):
total_grid_area = grid_area.sum()
area_pass_ase = grid_area[pass_ase].sum()
ase_grid = (total_grid_area - area_pass_ase) / total_grid_area * 100
area_pass_sda = grid_area[pass_sda].sum()
area_pass_sda_blind_up = grid_area[pass_sda_blinds_up].sum()
area_pass_sda_blinds_down = grid_area[pass_sda_blinds_down].sum()
sda_grid = area_pass_sda / total_grid_area * 100
sda_blinds_up_grid = area_pass_sda_blind_up / total_grid_area * 100
sda_blinds_down_grid = area_pass_sda_blinds_down / total_grid_area * 100
# grid summary
grid_summary = \
_create_grid_summary(
grid_info, sda_grid, sda_blinds_up_grid, sda_blinds_down_grid,
ase_grid, area_pass_sda, area_pass_ase, total_grid_area,
area_weighted=True
)
recursive_dict_merge(summary_grid, grid_summary)
total_area += total_grid_area
total_area_pass_ase += area_pass_ase
total_area_pass_sda += area_pass_sda
summary['ase'] = round((total_area - total_area_pass_ase) / total_area * 100, 2)
summary['sda'] = round(total_area_pass_sda / total_area * 100, 2)
summary['floor_area_passing_ase'] = total_area_pass_ase
summary['floor_area_passing_sda'] = total_area_pass_sda
summary['total_floor_area'] = total_area
else:
# assume all sensor points cover the same area
total_sensor_count = 0
total_sensor_count_pass_ase = 0
total_sensor_count_pass_sda = 0
for (pass_ase, pass_sda, grid_info, pass_sda_blinds_up,
pass_sda_blinds_down) in \
zip(pass_ase_grids, pass_sda_grids, grids_info,
pass_sda_blinds_up_grids, pass_sda_blinds_down_grids):
grid_count = grid_info['count']
sensor_count_pass_ase = pass_ase.sum()
ase_grid = (grid_count - sensor_count_pass_ase) / grid_count * 100
sensor_count_pass_sda = pass_sda.sum()
sensor_count_pass_sda_blinds_up = pass_sda_blinds_up.sum()
sensor_count_pass_sda_blinds_down = pass_sda_blinds_down.sum()
sda_grid = sensor_count_pass_sda / grid_count * 100
sda_blinds_up_grid = sensor_count_pass_sda_blinds_up / grid_count * 100
sda_blinds_down_grid = sensor_count_pass_sda_blinds_down / grid_count * 100
# grid summary
grid_summary = \
_create_grid_summary(
grid_info, sda_grid, sda_blinds_up_grid, sda_blinds_down_grid,
ase_grid, sensor_count_pass_sda, sensor_count_pass_ase,
grid_count, area_weighted=False
)
recursive_dict_merge(summary_grid, grid_summary)
total_sensor_count += grid_count
total_sensor_count_pass_ase += sensor_count_pass_ase
total_sensor_count_pass_sda += sensor_count_pass_sda
summary['ase'] = round((total_sensor_count - total_sensor_count_pass_ase) /
total_sensor_count * 100, 2
)
summary['sda'] = round(total_sensor_count_pass_sda / total_sensor_count * 100, 2)
summary['sensor_count_passing_ase'] = int(total_sensor_count_pass_ase)
summary['sensor_count_passing_sda'] = int(total_sensor_count_pass_sda)
summary['total_sensor_count'] = total_sensor_count
return summary, summary_grid
def _ase_hourly_percentage(
results: AnnualDaylight, array: np.ndarray, grid_info: dict,
direct_threshold: float = 1000, grid_area: Union[None, np.ndarray] = None
) -> np.ndarray:
"""Calculate the percentage of floor area that receives greater than 1000
direct lux for each hour.
Args:
results: A Results object.
array: A NumPy array of the grid to process.
grid_info: Grid information of the grid to process..
direct_threshold: Direct threshold.
grid_area: Grid area as a NumPy array with a area value for each sensor
point, or a None value if there is no area associated with the
sensor point.
Returns:
A hourly data collection of the percentage of floor area that receives
greater than 1000 direct lux.
"""
if grid_area is not None:
grid_area_2d = np.array([grid_area] * array.shape[1]).transpose()
area_above = \
np.where((array > direct_threshold), grid_area_2d, 0).sum(axis=0)
percentage_above = area_above / grid_area.sum() * 100
else:
percentage_above = \
(array > direct_threshold).sum(axis=0) / grid_info['count'] * 100
occupancy_hoys = schedule_to_hoys(results.schedule, results.sun_up_hours)
# map states to 8760 values
percentage_above = results.values_to_annual(
occupancy_hoys, percentage_above, results.timestep)
header = Header(Fraction('Percentage above 1000 direct lux'), '%',
AnalysisPeriod(results.timestep),
metadata={'SensorGrid': grid_info['name']})
data_collection = HourlyContinuousCollection(header, percentage_above.tolist())
return data_collection
[docs]
def shade_transmittance_per_light_path(
light_paths: list, shade_transmittance: Union[float, dict],
shd_trans_dict: dict) -> dict:
"""Filter shade_transmittance by light paths and add default multiplier.
Args:
light_paths: A list of light paths.
shade_transmittance: A value to use as a multiplier in place of solar
shading. This input can be either a single value that will be used
for all aperture groups, or a dictionary where aperture groups are
keys, and the value for each key is the shade transmittance. Values
for shade transmittance must be 1 > value > 0.
shd_trans_dict: A dictionary used to store shade transmittance value
for each aperture group.
Returns:
A dictionary with filtered light paths.
"""
shade_transmittances = {}
if isinstance(shade_transmittance, dict):
for light_path in light_paths:
# default multiplier
shade_transmittances[light_path] = [1]
# add custom shade transmittance
if light_path in shade_transmittance:
shade_transmittances[light_path].append(
shade_transmittance[light_path])
shd_trans_dict[light_path] = shade_transmittance[light_path]
# add default shade transmittance (0.05)
elif light_path != '__static_apertures__':
shade_transmittances[light_path].append(0.05)
shd_trans_dict[light_path] = 0.05
else:
shade_transmittances[light_path].append(1)
shd_trans_dict[light_path] = 1
else:
shd_trans = float(shade_transmittance)
for light_path in light_paths:
# default multiplier
shade_transmittances[light_path] = [1]
# add custom shade transmittance
if light_path != '__static_apertures__':
shade_transmittances[light_path].append(shd_trans)
shd_trans_dict[light_path] = shd_trans
else:
shade_transmittances[light_path].append(1)
shd_trans_dict[light_path] = 1
return shade_transmittances, shd_trans_dict
[docs]
def leed_states_schedule(
results: Union[str, AnnualDaylight], grids_filter: str = '*',
shade_transmittance: Union[float, dict] = 0.05,
use_states: bool = False
) -> Tuple[dict, dict]:
"""Calculate a schedule of each aperture group for LEED compliant sDA.
This function calculates an annual shading schedule of each aperture
group. Hour by hour it will select the least shaded aperture group
configuration, so that no more than 2% of the sensors points receive
direct illuminance of 1000 lux or more.
Args:
results: Path to results folder or a Results class object.
grids_filter: The name of a grid or a pattern to filter the grids.
Defaults to '*'.
shade_transmittance: A value to use as a multiplier in place of solar
shading. This input can be either a single value that will be used
for all aperture groups, or a dictionary where aperture groups are
keys, and the value for each key is the shade transmittance. Values
for shade transmittance must be 1 > value > 0.
Defaults to 0.05.
use_states: A boolean to note whether to use the simulated states. Set
to True to use the simulated states. The default is False which will
use the shade transmittance instead.
Returns:
Tuple: A tuple with a dictionary of the annual schedule and a
dictionary of hours where no shading configuration comply with the
2% rule.
"""
if not isinstance(results, AnnualDaylight):
results = AnnualDaylight(results)
grids_info = results._filter_grids(grids_filter=grids_filter)
schedule = occupancy_schedule_8_to_6(as_list=True)
occ_pattern = \
filter_schedule_by_hours(results.sun_up_hours, schedule=schedule)[0]
occ_mask = np.array(occ_pattern)
states_schedule = defaultdict(list)
fail_to_comply = {}
shd_trans_dict = {}
for grid_info in grids_info:
grid_states_schedule = defaultdict(list)
grid_count = grid_info['count']
light_paths = []
for lp in grid_info['light_path']:
for _lp in lp:
if _lp == '__static_apertures__' and len(lp) > 1:
pass
else:
light_paths.append(_lp)
shade_transmittances, shd_trans_dict = (
shade_transmittance_per_light_path(
light_paths, shade_transmittance, shd_trans_dict
)
)
if len(light_paths) > 6:
if use_states:
grid_states_schedule, fail_to_comply = states_schedule_descending(
results, grid_info, light_paths, occ_mask,
grid_states_schedule, fail_to_comply)
else:
grid_states_schedule, fail_to_comply = shd_trans_schedule_descending(
results, grid_info, light_paths, shade_transmittances, occ_mask,
grid_states_schedule, fail_to_comply)
else:
if use_states:
combinations = results._get_state_combinations(grid_info)
else:
shade_transmittances, shd_trans_dict = shade_transmittance_per_light_path(
light_paths, shade_transmittance, shd_trans_dict)
keys, values = zip(*shade_transmittances.items())
combinations = [dict(zip(keys, v)) for v in itertools.product(*values)]
array_list_combinations = []
for combination in combinations:
combination_arrays = []
for light_path, value in combination.items():
if use_states:
combination_arrays.append(
results._get_array(grid_info, light_path, state=value,
res_type='direct')
)
else:
array = results._get_array(
grid_info, light_path, res_type='direct')
if value == 1:
combination_arrays.append(array)
else:
combination_arrays.append(array * value)
combination_array = sum(combination_arrays)
combination_percentage = \
(combination_array >= 1000).sum(axis=0) / grid_count
array_list_combinations.append(combination_percentage)
array_combinations = np.array(array_list_combinations)
array_combinations[array_combinations > 0.02] = -np.inf
grid_comply = np.where(np.all(array_combinations==-np.inf, axis=0))[0]
if grid_comply.size != 0:
grid_comply = np.array(results.sun_up_hours)[grid_comply]
fail_to_comply[grid_info['name']] = \
[int(hoy) for hoy in grid_comply]
array_combinations_filter = np.apply_along_axis(
filter_array, 1, array_combinations, occ_mask
)
max_indices = array_combinations_filter.argmax(axis=0)
# select the combination for each hour
combinations = [combinations[idx] for idx in max_indices]
# merge the combinations of dicts
for combination in combinations:
for light_path, value in combination.items():
if light_path != '__static_apertures__':
grid_states_schedule[light_path].append(value)
for key, value in grid_states_schedule.items():
if key not in states_schedule:
states_schedule[key] = value
occupancy_hoys = schedule_to_hoys(schedule, results.sun_up_hours)
# map states to 8760 values
if use_states:
aperture_group_schedules = []
for identifier, values in states_schedule.items():
mapped_states = results.values_to_annual(
occupancy_hoys, values, results.timestep, dtype=np.int32)
aperture_group_schedules.append(
ApertureGroupSchedule(identifier, mapped_states.tolist())
)
states_schedule = \
DynamicSchedule.from_group_schedules(aperture_group_schedules)
else:
for light_path, shd_trans in states_schedule.items():
mapped_states = results.values_to_annual(
occupancy_hoys, shd_trans, results.timestep)
states_schedule[light_path] = mapped_states
return states_schedule, fail_to_comply, shd_trans_dict
[docs]
def leed_option_one(
results: Union[str, AnnualDaylight], grids_filter: str = '*',
shade_transmittance: Union[float, dict] = 0.05,
use_states: bool = False, states_schedule: dict = None,
threshold: float = 300, direct_threshold: float = 1000,
occ_hours: int = 250, target_time: float = 50, sub_folder: str = None):
"""Calculate credits for LEED v4.1 Daylight Option 1.
Args:
results: Path to results folder or a Results class object.
grids_filter: The name of a grid or a pattern to filter the grids.
Defaults to '*'.
shade_transmittance: A value to use as a multiplier in place of solar
shading. This input can be either a single value that will be used
for all aperture groups, or a dictionary where aperture groups are
keys, and the value for each key is the shade transmittance. Values
for shade transmittance must be 1 > value > 0.
Defaults to 0.05.
use_states: A boolean to note whether to use the simulated states. Set
to True to use the simulated states. The default is False which will
use the shade transmittance instead.
states_schedule: A custom dictionary of shading states. In case this is
left empty, the function will calculate a shading schedule by using
the shade_transmittance input. If a states schedule is provided it
will check that it is complying with the 2% rule. Defaults to None.
threshold: Threshold value for daylight autonomy. Default: 300.
direct_threshold: The threshold that determines if a sensor is overlit.
Defaults to 1000.
occ_hours: The number of occupied hours that cannot receive more than
the direct_threshold. Defaults to 250.
target_time: A minimum threshold of occupied time (eg. 50% of the
time), above which a given sensor passes and contributes to the
spatial daylight autonomy. Defaults to 50.
sub_folder: Relative path for a subfolder to write the output. If None,
the files will not be written. Defaults to None.
Returns:
Tuple:
- summary: Summary of all grids combined.
- summary_grid: Summary of each grid individually.
- da_grids: List of daylight autonomy values for each grid. Each item
in the list is a NumPy array of DA values.
- hours_above: List of hours above 1000 direct illuminance (with
default states) for each grid. Each item in the list is a NumPy
array of hours above 1000 lux.
- states_schedule: A dictionary of annual shading schedules for each
aperture group.
- fail_to_comply: A dictionary with the hoys where the 2% rule failed.
- grids_info: Grid information.
"""
# use default leed occupancy schedule
schedule = occupancy_schedule_8_to_6(as_list=True)
if not isinstance(results, AnnualDaylight):
results = AnnualDaylight(results, schedule=schedule)
else:
# set schedule to default leed schedule
results.schedule = schedule
occ_mask = results.occ_mask
total_occ = results.total_occ
grids_info = results._filter_grids(grids_filter=grids_filter)
if not states_schedule:
states_schedule, fail_to_comply, shd_trans_dict = \
leed_states_schedule(results, grids_filter=grids_filter,
shade_transmittance=shade_transmittance, use_states=use_states)
else:
raise NotImplementedError(
'Custom input for argument states_schedule is not yet implemented.'
)
# check to see if there is a HBJSON with sensor grid meshes for areas
grid_areas, units_conversion = [], 1
for base_file in Path(results.folder).parent.iterdir():
if base_file.suffix in ('.hbjson', '.hbpkl'):
hb_model = Model.from_file(base_file)
units_conversion = conversion_factor_to_meters(hb_model.units)
filt_grids = _filter_by_pattern(
hb_model.properties.radiance.sensor_grids, filter=grids_filter)
for s_grid in filt_grids:
if s_grid.mesh is not None:
grid_areas.append(s_grid.mesh.face_areas)
grid_areas = [np.array(grid) for grid in grid_areas]
break
if not grid_areas:
grid_areas = [None] * len(grids_info)
# annual sunlight exposure
ase_grids = []
hours_above = []
pass_ase_grids = []
ase_hr_pct = []
for (grid_info, grid_area) in zip(grids_info, grid_areas):
light_paths = []
for lp in grid_info['light_path']:
for _lp in lp:
if _lp == '__static_apertures__' and len(lp) > 1:
pass
else:
light_paths.append(_lp)
arrays = []
# combine direct array for all light paths
for light_path in light_paths:
array = results._get_array(
grid_info, light_path, res_type='direct')
array_filter = np.apply_along_axis(
filter_array, 1, array, occ_mask)
arrays.append(array_filter)
array = sum(arrays)
# calculate ase per grid
ase_grid, h_above = ase_array2d(
array, occ_hours=occ_hours, direct_threshold=direct_threshold)
# calculate the number of sensor points above 1000 lux for each hour
ase_hr_pct.append(
_ase_hourly_percentage(
results, array, grid_info, direct_threshold=direct_threshold,
grid_area=grid_area
)
)
ase_grids.append(ase_grid)
hours_above.append(h_above)
pass_ase = h_above < occ_hours
pass_ase_grids.append(pass_ase)
# spatial daylight autonomy
da_grids = []
pass_sda_grids = []
pass_sda_blinds_up_grids = []
pass_sda_blinds_down_grids = []
for grid_info in grids_info:
light_paths = []
for lp in grid_info['light_path']:
for _lp in lp:
if _lp == '__static_apertures__' and len(lp) > 1:
pass
else:
light_paths.append(_lp)
base_zero_array = np.apply_along_axis(filter_array, 1, np.zeros(
(grid_info['count'], len(results.sun_up_hours))), occ_mask)
arrays = [base_zero_array.copy()]
arrays_blinds_up = [base_zero_array.copy()]
arrays_blinds_down = [base_zero_array.copy()]
# combine total array for all light paths
if use_states:
array = results._array_from_states(grid_info, states=states_schedule, zero_array=True)
array = np.apply_along_axis(filter_array, 1, array, occ_mask)
for light_path in light_paths:
# do an extra pass to calculate with blinds always up or down
if light_path != '__static_apertures__':
array_blinds_up = results._get_array(
grid_info, light_path, state=0, res_type='total')
array_filter = np.apply_along_axis(
filter_array, 1, array_blinds_up, occ_mask)
arrays_blinds_up.append(array_filter)
array_blinds_down = results._get_array(
grid_info, light_path, state=1, res_type='total')
array_filter = np.apply_along_axis(
filter_array, 1, array_blinds_down, occ_mask)
arrays_blinds_down.append(array_filter)
else:
static_array = results._get_array(
grid_info, light_path, state=0, res_type='total')
array_filter = np.apply_along_axis(
filter_array, 1, static_array, occ_mask)
arrays_blinds_up.append(array_filter)
arrays_blinds_down.append(array_filter)
else:
for light_path in light_paths:
array = results._get_array(
grid_info, light_path, res_type='total')
array_filter = np.apply_along_axis(
filter_array, 1, array, occ_mask)
if light_path != '__static_apertures__':
sun_up_hours = np.array(results.sun_up_hours).astype(int)
shd_trans_array = states_schedule[light_path][sun_up_hours]
shd_trans_array = shd_trans_array[occ_mask.astype(bool)]
arrays.append(array_filter * shd_trans_array)
arrays_blinds_up.append(array_filter)
arrays_blinds_down.append(
array_filter * shd_trans_dict[light_path])
else:
arrays.append(array_filter)
arrays_blinds_up.append(array_filter)
arrays_blinds_down.append(array_filter)
array = sum(arrays)
array_blinds_up = sum(arrays_blinds_up)
array_blinds_down = sum(arrays_blinds_down)
# calculate da per grid
da_grid = da_array2d(array, total_occ=total_occ, threshold=threshold)
da_grids.append(da_grid)
da_blinds_up_grid = da_array2d(
array_blinds_up, total_occ=total_occ, threshold=threshold)
da_blinds_down_grid = da_array2d(
array_blinds_down, total_occ=total_occ, threshold=threshold)
# calculate sda per grid
pass_sda_grids.append(da_grid >= target_time)
pass_sda_blinds_up_grids.append(da_blinds_up_grid >= target_time)
pass_sda_blinds_down_grids.append(da_blinds_down_grid >= target_time)
# create summaries for all grids and each grid individually
summary, summary_grid = _leed_summary(
pass_ase_grids, pass_sda_grids, grids_info, grid_areas,
pass_sda_blinds_up_grids, pass_sda_blinds_down_grids)
# credits
if not fail_to_comply:
if summary['sda'] >= 75:
summary['credits'] = 3
elif summary['sda'] >= 55:
summary['credits'] = 2
elif summary['sda'] >= 40:
summary['credits'] = 1
else:
summary['credits'] = 0
if all(grid_summary['sda'] >= 55 for grid_summary in summary_grid.values()):
if summary['credits'] <= 2:
summary['credits'] += 1
else:
summary['credits'] = 'Exemplary performance'
else:
summary['credits'] = 0
fail_to_comply_rooms = ', '.join(list(fail_to_comply.keys()))
note = (
'0 credits have been awarded. The following sensor grids have at '
'least one hour where 2% of the floor area receives direct '
f'illuminance of 1000 lux or more: {fail_to_comply_rooms}.'
)
summary['note'] = note
# convert to datacollection
def to_datacollection(aperture_group: str, values: np.ndarray):
# convert values to 0 and 1 (0 = no shading, 1 = shading)
if use_states:
header = Header(data_type=GenericType(aperture_group, ''), unit='',
analysis_period=AnalysisPeriod())
hourly_data = HourlyContinuousCollection(header=header, values=values)
else:
values[values == 1] = 0
values[values == shd_trans_dict[aperture_group]] = 1
header = Header(data_type=GenericType(aperture_group, ''), unit='',
analysis_period=AnalysisPeriod(),
metadata={'Shade Transmittance': shd_trans_dict[aperture_group]})
hourly_data = HourlyContinuousCollection(header=header, values=values.tolist())
return hourly_data.to_dict()
if use_states:
states_schedule = {k:to_datacollection(k, v['schedule']) for k, v in states_schedule.to_dict().items()}
else:
states_schedule = {k:to_datacollection(k, v) for k, v in states_schedule.items()}
if sub_folder:
folder = Path(sub_folder)
folder.mkdir(parents=True, exist_ok=True)
summary_file = folder.joinpath('summary.json')
summary_file.write_text(json.dumps(summary, indent=2))
summary_grid_file = folder.joinpath('summary_grid.json')
summary_grid_file.write_text(json.dumps(summary_grid, indent=2))
states_schedule_file = folder.joinpath('states_schedule.json')
states_schedule_file.write_text(json.dumps(states_schedule))
grids_info_file = folder.joinpath('grids_info.json')
grids_info_file.write_text(json.dumps(grids_info, indent=2))
for (da, h_above, ase_hr_p, grid_info) in \
zip(da_grids, hours_above, ase_hr_pct, grids_info):
grid_id = grid_info['full_id']
da_file = folder.joinpath('results', 'da', f'{grid_id}.da')
da_file.parent.mkdir(parents=True, exist_ok=True)
hours_above_file = folder.joinpath(
'results', 'ase_hours_above', f'{grid_id}.res')
hours_above_file.parent.mkdir(parents=True, exist_ok=True)
ase_hr_p_file = folder.joinpath(
'datacollections', 'ase_percentage_above', f'{grid_id}.json')
ase_hr_p_file.parent.mkdir(parents=True, exist_ok=True)
np.savetxt(da_file, da, fmt='%.2f')
np.savetxt(hours_above_file, h_above, fmt='%.0f')
ase_hr_p_file.write_text(json.dumps(ase_hr_p.to_dict()))
da_grids_info_file = folder.joinpath(
'results', 'da', 'grids_info.json')
da_grids_info_file.write_text(json.dumps(grids_info, indent=2))
ase_grids_info_file = folder.joinpath(
'results', 'ase_hours_above', 'grids_info.json')
ase_grids_info_file.write_text(json.dumps(grids_info, indent=2))
ase_hr_pct_info_file = folder.joinpath(
'datacollections', 'ase_percentage_above', 'grids_info.json')
ase_hr_pct_info_file.write_text(json.dumps(grids_info, indent=2))
states_schedule_err_file = \
folder.joinpath('states_schedule_err.json')
states_schedule_err_file.write_text(json.dumps(fail_to_comply))
return (summary, summary_grid, da_grids, hours_above, states_schedule,
fail_to_comply, grids_info)
def _leed_daylight_option_one_vis_metadata():
"""Return visualization metadata for leed daylight option one."""
da_lpar = LegendParameters(min=0, max=100, colors=Colorset.annual_comfort())
ase_hrs_lpar = LegendParameters(min=0, max=250, colors=Colorset.original())
metric_info_dict = {
'da': {
'type': 'VisualizationMetaData',
'data_type': Fraction('Daylight Autonomy').to_dict(),
'unit': '%',
'legend_parameters': da_lpar.to_dict()
},
'ase_hours_above': {
'type': 'VisualizationMetaData',
'data_type': Time('Hours above direct threshold').to_dict(),
'unit': 'hr',
'legend_parameters': ase_hrs_lpar.to_dict()
}
}
return metric_info_dict